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Abstract Interoperability is the main challenge on the way to efficiently find and access
spatial data on the web. Significant contributions regarding interoperability have been made
by the Open Geospatial Consortium (OGC), where web service standards to publish and
download spatial data have been established. The OGCs GeoSPARQL specification tar-
gets spatial data on the Web as Linked Open Data (LOD) by providing a comprehensive
vocabulary for annotation and querying. While OGC web service standards are widely
implemented in Geographic Information Systems (GIS) and offer a seamless service in-
frastructure, the LOD approach offers structured techniques to interlink and semantically
describe spatial information. It is currently not possible to use LOD as a data source for
OGC web services. In this paper we make a suggestion for technically linking OGC web
services and LOD as a data source, and we explore and discuss its benefits. We describe
and test an adapter that enables access to geographic LOD datasets from within OGC Web
Feature Service (WFS), enabling most current GIS to access the Web of Data. We discuss
performance tests by comparing the proposed adapter to a reference WFS implementation.

1 Introduction

Linked Open Data (LOD) is an approach for creating typed links between data from differ-
ent sources in the Web. These typed links are based on objects, which have their meaning
explicitly defined by terms in shared LOD vocabularies (Heath and Bizer, 2011). With the
advent of LOD vocabularies, these objects and their links can be built in a machine-readable
way, enabling computers to perform queries and reasoning on datasets. The LOD approach
is based on the Linked Data Principles,1 which define essential steps for publishing data in
the Web and for making it part of a single global dataset (Bizer et al, 2009). These princi-
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ples help to enable interoperability and discoverability of datasets, creating a rich network
of information. Due to these characteristics, LOD has become a key solution when it comes
to efficiently publishing data on the Web.2

The LOD cloud is growing very rapidly, and some of its most important central hubs
contain vast amounts of geographic information. The DBPedia initiative,3 for example, sys-
tematically extracts information from Wikipedia,4 publishes it as LOD and links it to other
datasets (Auer et al, 2007). Part of this information is a geo-coordinate for every localiz-
able phenomenon described in Wikipedia. Successful efforts on implementing geographic
LOD have also been carried out by government agencies, such as the Ordnance Survey
of Great Britain,5 which contributes significantly to the growth of the Web of geographic
LOD based datasets (Goodwin et al, 2008).

Despite the benefits and efforts around LOD and also its inarguably increasing accep-
tance, the specific requirements of publishing geographic information on the Web have
been addressed by standardized web services so far. An example is the Web Feature Ser-
vice (WFS), a standard for providing geographic features on the Web, widely implemented
in most Geographic Information Systems (GIS), but not supporting LOD. Despite their dif-
ference, both techniques, LOD and geographic web services, have their specific benefits
and shortcomings for publishing and accessing geographic information on the Web. It has
been argued before that combining both worlds has a great potential for boosting accessi-
bility and interoperability of geographic information (Janowicz et al, 2010). For example,
making Linked Open Data available in a geo service standard will turn all geo-service
compatible GIS tools, whether they consist of simple desktop clients or distributed service
implementations, into powerful geographic analysis tools of the LOD cloud. This combines
the strengths of spatial data manipulation in a GIS with the potential of accessing datasets
that are interlinked in the Web of Data.

This paper addresses one of the open challenges for reaching this goal. We propose a
way to efficiently access geographic LOD datasets via WFS. The main idea is to use cur-
rent Geographic Information Service standards and re-implement them in order to consume
geographic LOD datasets published on the Web. The remainder of the paper is structured
as follows: Section 2 gives an overview of Linked Geographic Data, showing how it is
described in different vocabularies. Section 3 describes the Web Feature Service standard,
and explores its capabilities through its standard operations. Section 4 outlines the require-
ments and introduces our solution. Section 5 evaluates the performance of our implementa-
tion against the WFS reference implementation. Section 6 reviews related work, followed
by conclusions and an outlook on future work in Section 7.

2 Linked Geographic Data

LOD datasets are described using the Resource Description Framework6 (RDF), specified
by the World Wide Web Consortium (Brickley and Guha, 2004). RDF is a technology for
describing resources and their interrelations in subject-predicate-object form. These so-
called RDF Triples are commonly stored using an optimized storage and retrieval technol-
ogy called Triple Store. Most Triple Stores organize RDF Triples in sub-sets called Named
Graphs.7 Named Graphs aggregate data, so that, for example, RDF Triples from distinct
sources can be easily identified.

2 http://lod-cloud.net
3 http://dbpedia.org/About
4 http://www.wikipedia.org
5 http://www.ordnancesurvey.co.uk
6 http://www.w3.org/RDF/
7 http://www.w3.org/TR/rdf11-concepts/#section-dataset
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There have been several efforts to use LOD with geographic data. Suggestions include
vocabularies for describing geographic data, together with storage and query techniques
(Battle and Kolas, 2011). Among the existing vocabularies for describing geographic LOD
datasets is the Basic Geo Vocabulary8 (WGS84 lat/long), which provides a namespace
for describing geographic entities by coordinates pairs. This vocabulary is thus limited to
points using WGS84 as a geodetic reference datum. Listing 1 shows an example using the
WGS84 Vocabulary.

Listing 1: An example of a feature described with the WGS84 lat/long Vocabulary.

@prefix wgs84_pos: <www.w3.org/2003/01/geo/wgs84_pos#>.
@prefix my: <http://ifgi.lod4wfs.de/resource/>.
@prefix gn: <http://www.geonames.org/ontology#>.

my:GEOMETRY_1 a gn:Feature ;
wgs84_pos:lat "1.71389" ;
wgs84_pos:long "69.3857" .

An alternative to describe geographic LOD is the GeoSPARQL Vocabulary,9 defined
by the Open Geospatial Consortium10 (OGC). It offers not only classes and properties
for describing geographic LOD, but also spatial relations for querying geographic datasets
(e.g. intersects, touches, overlaps, etc.). Listing 2 shows an example of a geographic LOD
dataset using the GeoSPARQL Vocabulary, with the same point as in Listing 1. Geometries
are defined by the class Geometry and the coordinates can be encoded in an RDF literal
of type Well Know Text (WKT) using a single RDF property, namely asWKT.

Listing 2: An example of a feature described with the GeoSPARQL Vocabulary.

@prefix geo: <http://www.opengis.net/ont/geosparql/1.0#>.
@prefix my: <http://ifgi.lod4wfs.de/resource/>.
@prefix sf: <http://www.opengis.net/ont/sf#>.

my:GEOMETRY_1 a geo:Geometry ;
geo:asWKT "POINT (-69.3857 1.71389)"ˆˆsf:wktLiteral .

Due to the use of WKT literals, which correspond to OGC simple features (Herring,
2011), GeoSPARQL enables an efficient way to describe many different kinds of ge-
ometry (e.g. polygons, lines, points, multipoint, etc.). Another important aspect of the
GeoSPARQL vocabulary is the flexibility regarding coordinate reference systems. The lat-
ter are encoded as a literal type. This enables the use of many different coordinate reference
systems by adding their corresponding URI to the WKT literal (see Listing 3). If no spe-
cific reference system is provided in the WKT literal, the WGS84 Longitude-Latitude11

reference system is assumed by default.

8 http://www.w3.org/2003/01/geo/
9 http://www.opengis.net/doc/IS/geosparql/1.0
10 http://www.opengeospatial.org/
11 http://www.opengis.net/def/crs/OGC/1.3/CRS84
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Listing 3: An example of a feature described with the GeoSPARQL Vocabulary stating a
specific Coordinate Reference System.

@prefix geo: <http://www.opengis.net/ont/geosparql/1.0#>.
@prefix my: <http://ifgi.lod4wfs.de/resource/>.
@prefix sf: <http://www.opengis.net/ont/sf#>.

my:GEOMETRY_1 a geo:Geometry ;
geo:asWKT "<http://www.opengis.net/def/crs/EPSG/0/4326>
POINT (-69.3857 1.71389)"ˆˆsf:wktLiteral .

GeoSPARQL also offers the possibility to use the Geography Markup Language (GML)
to encode geometries. In this case, the data type (GMLLiteral), property (asGML)
and the URL for the geometry type (e.g. http://www.opengis.net/def/gml/
Polygon) have to be changed accordingly.

3 Web Feature Service

The Web Feature Service12 (WFS) is a platform-independent web service standard for
vector-based geographic feature requests on the Web, defined by the OGC. A feature
contains one or many geometries, optionally with attribute values. Its communication
interface is established by HTTP requests encoded as key-value pairs, to which the
server responds with XML documents. The standard operations of WFS are based on
the GetCapabilities, DescribeFeatureType and GetFeature requests, as
shown in Figure 1.

Fig. 1 Web Feature Ser-
vice Standard Operations
Overview.

3.1 GetCapabilities Request

The GetCapabilities request lists the WFS versions that the server can work with, the
geometries available on the WFS server, together with their metadata (e.g. title, maintain-
ers, abstract, provider’s contact information, spatial reference system, etc.). It also informs
the client which encodings are available for delivering the requested geometries (e.g. GML,
GML2, JSON, CSV, etc.). Finally, the XML-based Capabilities Document also indicates
which spatial functions are supported for each feature type. Listing 4 shows an example of
how a GetCapabilities request can be sent to a WFS server.

Listing 4: GetCapabilities Request Example.

http://[SERVER_ADDRESS]/wfs?SERVICE=WFS&REQUEST=GetCapabilities

12 http://www.opengeospatial.org/standards/wfs
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3.2 DescribeFeatureType Request

As shown in Figure 1, the next step after receiving the Capabilities Document from the
WFS server is to perform the DescribeFeatureType request. This request, as shown
in Listing 5, enables the client to select a feature - previously listed in the Capabilities Doc-
ument - and specify in which WFS encoding version it should be delivered. The response
of this request is an XML document containing all fields of the requested features attribute
table and their data types.

Listing 5: DescribeFeatureType Request Example.

http://[SERVER_ADDRESS]/wfs?SERVICE=WFS&VERSION=1.0.0&
REQUEST=DescribeFeatureType&TYPENAME=FEATURE_ID&SRSNAME=EPSG:4326

3.3 GetFeature Request

The last step to obtain features from a WFS is to perform the GetFeature operation. In
this operation the client asks for a feature in a specific WFS encoding version, as shown
in Listing 6. Finally, the client receives an XML document containing the feature and its
attribute table.

Listing 6: GetFeature Request Example.

http://[SERVER_ADDRESS]/wfs?SERVICE=WFS&VERSION=1.0.0&
REQUEST=GetFeature&TYPENAME=FEATURE_ID&SRSNAME=EPSG:4326

Although the DescribeFeatureType and GetFeature requests syntactically
only differ in the REQUEST parameter, they play different roles in the Web Feature Service
standard, namely request information about a certain feature and retrieve the feature itself,
respectively.

Another implementation of WFS – the Web Feature Service Transaction (WFS-T) –
allows creating, deleting and updating features, but these functionalities are currently not
addressed in this work. The WFS characteristics of: a) providing a platform-independent
layer for querying geographic features requests on the Web, b) the capability of attaching
attributes to the geographic features, and c) being a standard widely used as a vector data
source, make WFS one of the most suitable standards for this work.

4 Linked Open Data for Web Feature Services (LOD4WFS Adapter)

Linked Open Data offers a structured approach to describe and interlink raw data on the
Web, and the Web Feature Service standard offers a standardized and widely used way
to deliver geographic features through web services. The union of these two technologies
could increase the accessibility of geographic LOD datasets significantly. However, there
is currently no common way for them to communicate. Filling this gap between LOD and
WFS will allow current GIS to access geographic LOD datasets, thus enabling users to
exploit the interactive tools of GIS to visualize and analyse them. Having LOD as a data
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source can also open new functionalities for WFS, namely the possibility of integrating
different data sources, which is currently not supported by conventional WFS implementa-
tions that usually host their data sources in geographic databases or Shapefiles. This would
enable, for instance, having access to the municipalities of a certain country from server A
and having its river basins from server B in a single request. From this scenario emerged the
idea of creating an adapter to enable access from WFS to LOD. Figure 2 gives an overview
of how such an LOD4WFS Adapter13 would enable access from GIS clients to geographic
LOD datasets via WFS.

Fig. 2 LOD4WFS Adapter
Overview.

The adapter implements a service, compliant to the OGC WFS specification, which
listens to WFS requests and converts these requests into the SPARQL Query Language
for RDF.14 After the SPARQL Query is processed, the LOD4WFS Adapter receives the
RDF15 result set from the Triple Store, encodes it as a WFS XML document, and returns it
to the client (e.g., a GIS). This approach enables current GIS to transparently have access
to geographic LOD datasets, using their implementation of WFS, without any adaptation
whatsoever being necessary. In order to reach a higher number of GIS, the currently most
common implementation of WFS has been adopted for the LOD4WFS Adapter, namely
the OGC Web Feature Service Implementation Specification 1.0.0 (Vretanos, 2002). The
LOD4WFS Adapter enables access to geographic LOD datasets in two different ways,
which we will call Standard Data Access and Federated Data Accesses in the following.

4.1 Standard Data Access

The Standard Data Access feature was designed in order to enable access to all geographic
LOD datasets contained in a triple store. This feature basically works as an explorer, look-
ing for geographic LOD datasets from a certain Triple Store and making them available via
WFS. Due to the possibility of describing different types of geometries (polygons, lines,
points) and many different coordinate reference systems, which are characteristic require-
ments of a WFS, we chose the GeoSPARQL Vocabulary as an input requirement for the
Standard Data Access feature. Listing 7 shows how geometries and their related attributes
are expected to be structured. The geometries are encoded as WKT literals and the attributes
of features are linked to the instance of the geo:Geometry class via RDF Schema16 and
Dublin Core Metadata Element Set17 vocabularies. However, there are no constraints on
which vocabularies or properties may be used for describing attributes.

13 https://github.com/jimjonesbr/lod4wfs
14 http://www.w3.org/TR/rdf-sparql-query/
15 http://www.w3.org/RDF/
16 http://www.w3.org/TR/rdf-schema/
17 http://dublincore.org/documents/dces/
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Listing 7: LOD dataset example: Turtle RDF encoding of a dataset, including ID and
description.

@prefix geo: <http://www.opengis.net/ont/geosparql/1.0#>.
@prefix my: <http://ifgi.lod4wfs.de/resource/>.
@prefix sf: <http://www.opengis.net/ont/sf#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

my:FEATURE_RECIFE a geo:Feature ;
rdf:ID "2611606"ˆˆxsd:integer ;
dc:description "Recife"ˆˆxsd:string ;

geo:hasGeometry my:GEOMETRY_REFICE .

my:GEOMETRY_RECIFE a geo:Geometry ;
geo:asWKT "<http://www.opengis.net/def/crs/EPSG/ 0/4326> POLYGON ((

-35.0148559599999984 -8.0564907399999992,
-34.9939074400000010 -8.0493884799999993,
...
-35.0148559599999984 -8.0564907399999992)) "ˆˆsf:wktLiteral .

4.1.1 Required Metadata

In order to make the datasets discoverable via the Standard Data Access feature, additional
metadata must be added to the datasets. We make use of Named Graphs for this purpose.
Every Named Graph in the LOD data source must contain only objects of the same feature
type. This approach facilitates the discoverability of Features, speeding up queries that list
the Features available in the triple store. In case a Named Graph contains multiple feature
types, the features can be split into different layers using the Federated Data Access (see
Section 4.2). Finally, each Named Graph needs to be described by certain RDF properties,
namely abstract, title and subject from the Dublin Core Terms Vocabulary.18

This information helps the adapter to classify all Features available in a Triple Store, so
that they can be further on discovered by the WFS client through the WFS Capabilities
Document (see Listing 8). Alternatively, the LOD4WFS Adapter could also use a query
based on other RDF types to construct the Capabilities Document.

Listing 8: Named Graph Example.

@prefix dct: <http://purl.org/dc/terms/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<http://ifgi.lod4wfs.de/graph/municipalities> dct:title "Brazilian
Municipalities"ˆˆxsd:string ;
dct:abstract "Municipalities of the Brazilian Federal
States."ˆˆxsd:string ;
dct:subject "municipalities boundaries"ˆˆxsd:string .

It is important to emphasize that these RDF properties are used simply as a proof of
concept for the proposed adapter, therefore other vocabularies and properties could be used
instead.

18 http://dublincore.org/documents/dcmi-terms/



8 Jim Jones, Werner Kuhn, Carsten Keßler, and Simon Scheider

4.2 Federated Data Access

The Federated Data Access feature offers the possibility of accessing geographic LOD
datasets based on predefined SPARQL Queries. Differently than the Standard Data Access,
the Federated Data Access feature is able to execute SPARQL Queries to multiple SPARQL
Endpoints, thus enabling WFS features to be composed of data from different sources. As a
proof of concept of what can be achieved, Listing 9 shows an example of a federated query,
combining data from DBpedia and Ordnance Survey of Great Britain. The SPARQL Query
is executed against the Ordnance Survey’s SPARQL Endpoint,19 retrieving the GSS Code20

and geographic coordinates from districts of Great Britain – the coordinates are provided
by the Ordnance Survey using the WGS84 lat/long Vocabulary, but this example converts
them to WKT literals using the function CONCAT. Afterwards, the retrieved entries are
filtered by matching the districts’ names with DBpedia entries from the east of England,
which are written in English language. The result of this SPARQL Query can be further
on listed as a single WFS feature via the LOD4WFS Adapter, thereby providing a level of
interoperability between datasets that is currently unachievable by any implementation of
WFS, whether using Shapefiles or geographic databases.

Listing 9: Federated Data Access – SPARQL Query Example.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX os: <http://data.ordnancesurvey.co.uk/ontology/admingeo/>

SELECT ?abstract ?name ?gss(CONCAT("POINT(", xsd:string(?long), " ",
xsd:string(?lat), ")") AS ?wkt)

WHERE
{?subject rdfs:label ?name .

?subject wgs84:lat ?lat .
?subject wgs84:long ?long .
?subject os:gssCode ?gss .
?subject a os:District
SERVICE <http://dbpedia.org/sparql/> {

?entry rdfs:label ?place .
?entry dbpo:abstract ?abstract .
?entry dbpo:isPartOf dbp:East_of_England
FILTER langMatches(lang(?place), "EN")
FILTER langMatches(lang(?abstract), "EN")
FILTER ( STR(?place) = ?name )

}
}

The LOD4WFS Adapter provides a web interface that allows users to write, validate
and store SPARQL Queries (see Section 4.3.2).

19 http://data.ordnancesurvey.co.uk/datasets/os-linked-data/explorer/
sparql
20 http://data.ordnancesurvey.co.uk/ontology/admingeo/gssCode
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4.3 LOD4WFS Software Architecture

The LOD4WFS Adapter, which was entirely developed in the Java programming language,
is divided into 6 main system modules: WFS Interface, Web Interface, Request Valida-
tor, Query Manager, Connection Manager and RDF2WFS Converter. Figure 3 shows an
overview of the application modules.

Fig. 3 LOD4WFS Modules.

4.3.1 Web Interface

The Web Interface is responsible for receiving HTTP requests and translating them to the
WFS Interface. It also provides access to a web-based system for maintaining SPARQL
Queries created via Federated Data Access and changing the system’s settings (e.g. de-
fault SPARQL Endpoint). This interface was developed using the Java-based HTTP server
Jetty,21 enabling the application to be deployed without the need of an external servlet
container.

4.3.2 WFS Interface

The WFS Interface implements a listener for the standard operations defined in the
OGC WFS Specification, namely GetCapabilities, DescribeFeatureType and
GetFeature. Its main goal is to create an agnostic communication layer that enables any
WFS client implementation to send requests and receive query results.

21 http://www.eclipse.org/jetty/
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4.3.3 Request Validator

This module is responsible for validating the HTTP request received by the WFS Interface,
making sure all operations sent by the WFS client are properly fulfilled. Table 1 shows the
operations implemented by the Request Validator.

Table 1: Validated WFS Operations
Operation Values
SERVICE WFS by default.
REQUEST GetCapabilities, DescribeFeatureType or GetFeature.
SRSNAME Spatial Reference System of a feature available in the system, e.g. EPSG:4326.
TYPENAME ID of a feature available in the system, provided by at the Capabilities Document.
VERSION 1.0.0 by default

In case of invalid or unknown requests are sent (e.g. non-existing feature or wrong ver-
sion), an exception report is delivered, according to the Web Feature Service Implementa-
tion Specification.

4.3.4 Query Manager

Once the requests have been approved by the Request Validator, they must be translated
and processed. The Query Manager is responsible for parsing re-quests sent by the WFS
client and for translating them into SPARQL queries. It is also responsible for mapping
each feature to its data access technique (Standard Data Access or Federated Data Access),
which have their requests translated differently. The requests are translated as follows:

GetCapabilities

Standard Data Access – Selects all named graphs (Containers of Features) from the triple
store, together with the geometry type of the containing Feature.
Federated Data Access – Lists all customized SPARQL Queries stored via the Web Inter-
face.

DescribeFeatureType

Standard Data Access – Lists all properties attached to a selected Feature together with
their range.
Federated Data Access – Lists the variables expected from the customized SPARQL
Queries.

GetFeature

Standard Data Access – Selects all geometries of a selected Feature together with the values
of their related properties.
Federated Data Access – Executes the customized SPARQL Query of the requested feature
to its predefined SPARQL Endpoint.
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4.3.5 Connection Manager

The Connection Manager module is responsible for establishing communication from the
LOD4WFS Adapter to Triple Stores. Its main goal is to execute SPARQL queries, previ-
ously composed by the Query Manager, and forwards its results to the RDF2WFS Con-
verter for further processing. It is based on the Apache Jena API22 for building Semantic
Web applications.

4.3.6 RDF2WFS Converter

Once the SPARQL Query has been processed and its results are returned to the system,
the RDF2WFS module converts it to standard WFS documents. Depending on the re-
quest performed by the WFS client (GetCapabilities, DescribeFeatureType
or GetFeature) it creates an XML document with the SPARQL Query result and deliv-
ers it back to the WFS client.

5 Solution Evaluation

In order to evaluate the performance of the proposed adapter, this section presents tests
to compare it to the reference implementation of OGC WFS, namely the software server
for geospatial data GeoServer.23 The test compares the server response time for the
GetFeature request in both LOD4WFS and GeoServer WFS implementations. Its main
goal is to measure the time each of the services takes to process a GetFeature request, per-
form the query on the storage management system and send the XML document back to
the client. For setting up GeoServer, the database PostgreSQL,24 with its spatial extension
PostGIS,25 was chosen as feature storage for the WFS (Scenario A). For the LOD4WFS
Adapter, three different Triple Stores were tested, namely Parliament,26 Fuseki27 and
OWLIM-Lite28 (Scenario B). The GetFeature requests were performed using the com-
mand line tool cURL.29 The standard installations of all software involved in the tests were
kept. Figure 4 shows an overview of how the test environment is structured.

Fig. 4 Test environment
overview.

22 http://jena.apache.org/
23 http://geoserver.org/display/GEOS/Welcome
24 http://www.postgresql.org/
25 http://postgis.net/
26 http://parliament.semwebcentral.org/
27 http://jena.apache.org/documentation/serving_data/
28 http://www.ontotext.com/owlim
29 http://curl.haxx.se/
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5.1 Test Environment

All tests were performed using a virtual machine as specified in Tables 2 and 3.

Table 2: Hardware Environment
Intel(R) Xeon(R)

Processor CPU E5530 @ 2.40GHz, Dual Core
82545EM Gigabit Ethernet Controller (Copper)

Network Card Capacity: 1GB/s
Clock: 66MHz

Memory 8GB

Table 3: Software environment
Software Version

Ubuntu Server
Operating System Linux 3.2.0-58-generic (amd64)

Version 12.04 LTS
File System: ext4

Apache Tomcat 6.0.35
GeoServer* 2.4.4
PostgreSQL 9.1
PostGIS 1.5.3
OWLIM-Lite* 4.0

Sun Microsystems Inc.: 1.6.0 27
Java Runtime (OpenJDK 64-Bit Server VM)
cURL 7.29.0
* Embedded at OpenRDF Sesame 2.7.0 and hosted with Apache Tomcat.

5.2 Test Datasets

The datasets used for the tests (see Table 4) were created by the Brazilian Institute of
Geography and Statistics30 (IBGE). They all contain polygon geometries and are available
in Shapefile format.31

To test Scenario A, the dataset was stored in the PostgreSQL database and further on
added to the GeoServer as a data source for feature layers (see Table 5). This was necessary
to enable access to the features through the GeoServer WFS interface.

In order to use the same dataset for Scenario B, the dataset had to be converted to LOD,
fulfilling the characteristics previously discussed in Section 4.1. For this purpose, a script
(shp2rdf ) in the R programming language32 was developed for reading Shapefiles and cre-
ating an LOD dataset in N-Triples syntax (Beckett, 2014). The script uses the rgdal33 and
rgeos34 packages.

30 http://ibge.gov.br/
31 ftp://geoftp.ibge.gov.br/mapas_interativos/
32 http://www.r-project.org/
33 http://cran.r-project.org/web/packages/rgdal/rgdal.pdf
34 http://cran.r-project.org/web/packages/rgeos/rgeos.pdf
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Table 4: Test datasets.
Brazilian municipalities dataset
Number of geometries 5799
Dataset size 11.2 MB
Amazon rivers dataset
Number of geometries 18690
Dataset size 45 MB
Amazon vegetation dataset
Number of geometries 39082
Dataset size 173,2 MB

Table 5: Datasets Overview for Scenario A.
Dataset Table records Table size*
Brazilian Municipalities 5799 16 MB
Amazon Rivers 18690 55 MB
Amazon Vegetation 39083 183 MB
* Including indexes.

After the conversion, the same RDF N-Triples files (see Table 6) were loaded into the
Parliament (Scenario B.1), Fuseki (Scenario B.2) and OWLIM-Lite (Scenario B.3) Triple
Stores. The datasets in all test scenarios could also be successfully downloaded and dis-
played using the WFS clients of GIS QGIS35 and ArcMap.36 The converted datasets can
be found at the following SPARQL Endpoint.37

Table 6: Datasets Overview for Scenario B.
Dataset Total triples File size
Brazilian Municipalities 86988 28.7MB
Amazon Rivers 359206 113.8 MB
Amazon Vegetation 703497 416.1 MB

5.3 Test Procedure

The loaded datasets were queried via HTTP GetFeature requests using cURL. The
GetFeature request was performed 10 times in each test scenario for each dataset, after-
wards the arithmetic mean value of the time elapsed was calculated. To avoid the network
speed to affect the test results, the download speed was limited to 500 kilobytes per second,
so that all test scenarios have the same download performance. Listing 10 shows an exam-
ple of how the requests per cURL were sent to the test server. Table 7 summarizes the tests
performed in each test scenario.

35 http://www.qgis.org/
36 http://esri.de/products/arcgis/about/arcmap.html
37 http://data.uni-muenster.de/open-rdf/repositories/lod4wfs
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Listing 10: Sample HTTP Request Sent via cURL.

$ curl --limit-rate 500k ’http://[SERVER_ADDRESS:PORT]/wfs?SERVICE=
WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=FEATURE_ID’
-o feature.xml;$

Table 7: Performance of GetFeature requests.
Test Scenario Avg. Time (mm:ss.ms) Standard Deviation
I. Brazilian municipalities dataset
A – (GeoServer WFS with PostgreSQL) 00:38.217 0.1916
B.1 – (LOD4WFS with Parliament) 00:38.731 0.0961
B.2 – (LOD4WFS with Fuseki) 00:38.877 0.1283
B.3 – (LOD4WFS with OWLIM-Lite) 00:38.857 0.0762
II. Amazon rivers dataset
A – (GeoServer WFS with PostgreSQL) 02:36.542 0.0802
B.1 – (LOD4WFS with Parliament) 02:38.110 0.1181
B.2 – (LOD4WFS with Fuseki) 02:38.150 0.2795
B.3 – (LOD4WFS with OWLIM-Lite) 02:38.076 0.0872
III. Amazon vegetation dataset
A – (GeoServer WFS with PostgreSQL) 08:35.681 0.0642
B.1 – (LOD4WFS with Parliament) 08:44.013 0.2447
B.2 – (LOD4WFS with Fuseki) 08:44.771 0.1037
B.3 – (LOD4WFS with OWLIM-Lite) 08:39.079 0.0868

5.4 Results and Discussion

The results demonstrated a non-substantial efficiency difference between the test scenar-
ios. Querying the Brazilian municipalities dataset, all tested scenarios showed a similar
response time, having Scenario A as the most efficient one, being 1.33% faster than the
second fastest scenario, namely Scenario B.1 (see Table 7-I). The efficiency difference
querying this dataset was limited to the milli-second scale, though (see Figure 5).

Fig. 5 Performance com-
parison for the Brazilian
municipalities dataset.

The tests querying the Amazon rivers dataset showed again a similar performance be-
tween the test scenarios using triple stores. Among them, Scenario B.3 had a slightly better
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performance than Scenario B.1 and B.2. Scenario A had again the best performance among
all test scenarios (see Table 7-II), being 0.97% faster than the second fastest test scenario,
namely Scenario B.3.

Fig. 6 Performance compar-
ison for the Brazilian rivers
dataset.

Tests querying the Amazon vegetation dataset showed a bigger performance difference
between the test scenarios involving triple stores (see Table 7-III). Scenario B.3 demon-
strated to have a more efficient response time than Scenarios B1 and B.2 when querying
bigger datasets, being 0.94% faster than the second fastest triple store based test scenario,
namely Scenario B.1. Among all test scenarios, Scenario A demonstrated again a better
performance than all others test scenarios (see Figure 7), being 0.65% faster than Scenario
B.3.

Fig. 7 Performance com-
parison for the Brazilian
vegetation dataset.

Though the test results showed no expressive difference between the test scenarios, it
demonstrated that the combination of GeoServer with the relational database PostgreSQL
still provides a slightly faster platform for enabling access to geographic vector data. The
results showed also, considering the given test environment, that the efficiency difference
between the LOD4WFS approach and GeoServer with PostgreSQL gets smaller when big-
ger datasets are requested. The approach proposed by the LOD4WFS relies on the respec-
tive triple store’s efficiency, which has been shown to be slower than a relational database
in our test scenarios. However, the main point we want to stress in this work is the great
benefit of having LOD datasets as data source for WFS. This approach provides not only
an innovative and competitive way for serving data to current web service standards, but
also offers the possibility of combining multiple data sources and creating new datasets on
demand (see Section 4.2), which is currently not provided by any WFS implementation.
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It is also important to mention that the results presented in these tests represent the
performance of specific system versions in a single-user environment (see Section 5.1),
therefore reproducing the tests with other releases will inevitably lead to different results.

6 Related Work

Significant efforts have been made to introduce and enhance the usage of semantics (Kuhn,
2005) in geospatial information and web services. Among them are the works on geograph-
ical Linked Data (Goodwin et al, 2008), Semantic Geospatial Web services (Roman and
Klien, 2007), semantic enablement for spatial data infrastructures (Janowicz et al, 2010),
structured alignment methods to geospatial ontologies (Cruz and Sunna, 2008), semantic-
based automatic composition of geospatial Web service chains (Yue et al, 2007) and a
framework for semantic knowledge transformation of geospatial data (Zhao et al, 2009).
The technological challenges and benefits of adding a spatial dimension to the Web of Data
have been also discussed by Auer et al (2009), where spatial data was systematically ex-
tracted from the collaborative project OpenStreetMap38 and converted to RDF. Efforts on
yielding geographic information in OGC web services and embedding them as LOD have
been conducted by Roth (2011) with the Geographic Feature Pipes.

Other authors have suggested to use the OGC WFS standard as an interface for provid-
ing access to semantic data; Staub (2007) and Donaubauer et al (2007) have proposed an
extension of the existing WFS standard to create a model-driven interface. These works,
however, require modification of the OGC WFS standard. In contrast, we use the WFS
standard as it is specified by OGC, so that current GIS can access it without any modifica-
tion.

7 Conclusions and Future Work

This paper presents an alternative way of accessing geographic LOD datasets from cur-
rent GIS. We have explored the possibility of using the OGC WFS standard as an inter-
mediate layer between geographic LOD datasets and GIS. We developed an application
(LOD4WFS Adapter) that acts as a service for: 1) listening to WFS requests and translating
them to SPARQL Queries; and 2) transforming the RDF result set into WFS standard doc-
uments. Performance tests of the LOD4WFS Adapter against the reference implementation
of OGC WFS (GeoServer) were conducted. The test environment involved three different
triple stores and a relational database. The preliminary tests showed that our LOD4WFS
Adapter can compete with the reference implementation for WFS services, while providing
significantly larger flexibility in accessing and integrating data sources on the Web.

This paper demonstrates that using LOD as data source for WFS is perfectly feasible and
has a great potential. It combines the benefits of a widely used web service standard with the
interoperability offered by LOD. This improves accessibility of geographical information
on the Web of Data for GIS. Future work includes:

First, the implementation of WFS spatial operations. This would allow the LOD4WFS
Adapter to translate supported WFS spatial operations (e.g. contains, intersects) to SPARQL
using the Geographic Query Language for RDF (GeoSPARQL ). Currently only a few
Triple Stores implement GeoSPARQL (e.g. Parliament, Oracle Spatial RDF Semantic

38 http://www.openstreetmap.org/
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Graph,39 Strabon40). This situation may improve once standard Triple Stores will adopt
GeoSPARQL and corresponding OGC standards for spatial queries.

The second enhancement is the transaction operation (WFS-T). Currently, the LOD4WFS
Adapter implements only requests of geographic information, and does not allow any data
manipulation. Implementing the operations defined by WFS-T would enable WFS clients
not only to query geographic LOD datasets, but also to insert, edit and delete existing
features. The third enhancement we intend is the possibility of accessing geographic LOD
datasets encoded as GML and other common formats, e.g. GeoRSS,41 or GeoJSON.42 Cur-
rently, only WKT is supported.

Finally, we intend to perform more detailed comparisons of the LOD4WFS Adapter and
conventional WFS implementations. In order to achieve this, we plan to perform stress tests
and to evaluate the application behavior in both single and multi-user environments using
different operating systems.
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