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Abstract

The Global Positioning System (GPS) is widely used and is a major positioning
technology for land vehicle navigation. However it is not 100% accurate, which
is a problem for any kind of navigation system. There are several factors that
contribute to positioning errors, e.g., satellite related errors, propagation related
errors, receiver related errors, GPS signal masking or blockage and satellite
geometric contribution to position error (Quddus, 2006). This is where map

matching comes in.

Map matching is the process of matching GPS trajectories to a digital road
network. This is done by map matching algorithms. In Quddus (2006) several
of the existing map matching algorithms are discussed and three improved map
matching algorithms are introduced. One of the more successful algorithms is
the fuzzy logic map matching algorithm, whose implementation is the main part
of the bachelor thesis.

The above mentioned map matching algorithm is implemented in R (R Core
Team, 2013) and therefore it is open source. The testing of the algorithm is
done using field data acquired from the enviroCar1 project.

The result of this bachelor thesis is a documentation and an R package providing
functions which allow the user to match their GPS trajectories to a digital
road network using the fuzzy logic map matching algorithm and also allow
the customization of the parameters used in the membership functions in the
fuzzification process.

1https://www.enviroCar.org/
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1 Introduction

1.1 Background

Since its launch in 1978 GPS has become an important global utility and an
integral part of global security, economy and transportation safety (DoD, 2008).
Originally developed for military use, GPS nowadays also provides positioning,
navigation and timing services for civil and commercial users around the world.
In this research especially its importance for transportation technologies, such
as personal navigation assistance, matters.

Nowadays a wide variety of Advanced Transport Telematics Systems

(ATTS) which depend on GPS are available. ATTS can be described as

the integrated application of advanced sensors, computers, electron-
ics, navigation, and communication technologies to vehicles and road-
ways to increase safety, reduce congestion, enhance mobility, mini-
mize environmental impact, increase energy efficiency, and promote
economic productivity for a healthier economy(Quddus, 2006, p. 2).

Basically this includes all kinds of advanced personal navigation assistance sys-
tems and systems for monitoring and tracking vehicle movement. The data col-
lected from such systems helps to understand the behavior of travelers and shows
potential consequences to the environment and the transport system (Quddus
et al., 2003).

All these systems build on two essential components which are a device to obtain
the position of a vehicle, e.g. GPS, and a digital road map for reference of the
vehicle location. Ideally both of these components are 100% accurate and the
vehicle location coincides with the digital road network. Unfortunately GPS and
also digital road networks are affected by errors. GPS is affected by systematic
errors, random errors and errors in the digital road network arise during the
creation and digitalization of maps (Quddus, 2006). This means that it is very
unlikely that the locations obtained from GPS and the digital road network
coincide and additional work, that is called map matching, is needed to reconcile
them.

1.2 Problem statement

In White et al. (2000) the map matching problem is described as follows. Assume
a vehicle is moving along a finite system of streets ,N , we do not know. Instead
we have a network representation, N , of the system in R2. For simplicity it is
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assumed that there is a one-to-one correspondence between the streets in N and
the arcs in N

N consists of piece-wise linear arcs representing single roads. Each arc, A ∈ N ,
can be described by a finite sequence of points, (A0, A1, ..., AnA

). These points
are the endpoints of the line segments arc A consists of. The points A0 and
AnA

are called nodes. These are the endpoints of an arc and often points on
which it is possible to move to another arc, hence they correspond to dead-ends
or junctions in the street system.

Additionally the GPS device provides us with an estimate of the vehicle’s loca-
tion at time t. The actual location of the vehicle at time t is denoted by Pt and
the estimated location is Pt.

The goal is to find the road, A ∈ N , that corresponds to the vehicle’s actual
location, Pt, by matching the estimated location, Pt, with an arc A ∈ N .

Figure 1: The Map Matching Problem (White et al., 2000, p. 94)
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1.3 Aims

Of the several existing map matching algorithms discussed in Quddus (2006) the
fuzzy logic map matching algorithm is the most successful in terms of identifying
correct links in the digital road network, as can be seen in Quddus (2006, p. 215).
Hence, the purpose of this research is the implementation of the fuzzy logic based
map matching algorithm in the R programming language.

The main motivation for this is the enviroCar2 project, a collaborative project
of 52north3 and the Institute for Geoinformatics at University of Münster4.
EnviroCar is an open platform for citizen science that allows you to investigate
the environmental effects of your driving. Using an Android5 app users can
submit their recorded trajectories including data such as fuel consumption, CO2,
noise emission etc. and visualize them on a map. The algorithm implemented in
this research can be used to match these trajectories to the digital road network.

The result of this research is an R (R Core Team, 2013) package called fuzzyMM

that can be used to reconcile inaccurate vehicle locations obtained from GPS
with a digital road network.

2 A Fuzzy Logic Map Matching Algorithm

This section shortly introduces Sugeno’s fuzzy inference system and describes
the fuzzy logic map matching algorithm that builds upon it and whose imple-
mentation is the main goal of this research. A more detailed description of the
algorithm and the fuzzy inference system is found in Quddus (2006).

2.1 Sugeno’s Fuzzy Inference System

Fuzzy logic was introduced by Zadeh in the 1960’s. He worked in the field of con-
trol engineering and developed the fuzzy theory in order to deal with problems
where knowledge of experienced human operators, expressed in vague, linguistic
terms is needed to control certain processes (Quddus, 2006). In order to rep-
resent the meaning of linguistic terms “the concept of grades of membership or
the concept of possibility values of membership was introduced” (Quddus, 2006,
p. 143).

The point is basically to map an input space to an output space using a list of

2https://www.envirocar.org/
3http://52north.org/
4http://www.uni-muenster.de/Geoinformatics/en/
5http://www.android.com/
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if-then-rules (MathWorks, 2013a). The whole system doing this is called Fuzzy
Inference System (FIS) and is shown in Figure 2.

Figure 2: Fuzzy Inference System (FIS) (Quddus, 2006, p. 144)

In Quddus (2006) the functionality of a FIS is described as follows.
Assume:

� If the speed of the vehicle is high and the travel time is low then the traffic
congestion on the link is low

is a knowledge-based fuzzy rule. In this example speed and travel time are
the input variables for the FIS and high and low are so called input fuzzy

subsets. Hence, the traffic congestion is the output variable and low is
the output fuzzy subset. In a process called fuzzification the input vari-
ables now are assigned to membership values between 0 and 1 using membership
functions (MF). After the fuzzification process the output of the if-then-rules is
calculated by applying a minimum method or a product method to the fuzzified
inputs and then using an output MF. The outputs of each rule are then ag-
gregated and afterwards deffuzified using methods such as centroid calculation,
weighted average, etc. The final output is a single number called crisp.

Sugeno’s FIS is one of the main components of the fuzzy logic map matching
algorithm because it is used to calculate the possibility of matching a position
obtained from GPS to a certain link in the digital road network. However, it
slightly differs from the FIS described above. While the fuzzy rules in the FIS
described above look as follows:

If x is A and y is B then z is C

the rules in Sugeno’s FIS have the following form:

If x is A and y is B then Z = f(x, y)

with Z = f(x, y) being a linear function, Z = ax+ by + c or a constant in case
a = b = 0 (MathWorks, 2013b). Figure 3 shows how Sugeno’s FIS works.

In Figure 3 the input variables for Sugeno’s FIS are PQ = 15m and ∆θ = 78◦.
After the fuzzification, using trapezoidal MF, a minimum method is applied to
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Figure 3: Sugeno’s Fuzzy Inference System (Quddus, 2006, p. 151)

the outputs of the MF to obtain the degree of applicability, ω, for each rule. Z
is simply a constant and the output of each rule is:

outputj = (
ωj∑N
i=1 ωi

)Zj , N = number of rules

The final output of the FIS is the weighted average of all rule outputs:

Z =

∑N
i=1 ωiZi∑N
i=1 ωi

.

2.2 Map Matching Process

The map matching process of the fuzzy logic map matching algorithm is split
into two parts. The first and most challenging part is the identification of the
correct link in the digital road network, which is done in the initial map matching
process (IMP) and in the subsequent map matching process (SMP). The second
part is the determination of the vehicle location on a link (Quddus, 2006). All
the processes are described below.
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2.2.1 Initial map matching process (IMP)

In Quddus (2006) the IMP is described as follows. It is the first and very
important part of the map matching process because it is responsible for the
identification of the initial link. An error in this process will probably lead to
incorrect subsequent matchings.

The IMP relies on an elliptical or rectangular error region formed around the
GPS position that needs to be matched to the road network. This error region is
derived using the variance-covariance matrix (VCV) associated with the errors in
the computed GPS position. Unfortunately the calculation of the VCV requires
data the trajectories from the enviroCar project do not include (e.g. range
between the satellite and the receiver, the topocentric distance between the
satellite and the receiver etc.). Because of this an error rectangle with fixed
size will be used in this research. More information about this are given in the
implementation section.

After the error rectangle is formed, all the links within the rectangle are con-
sidered to be candidate links and the FIS for the IMP is used to identify the
correct link among the candidate links. The input variables of this FIS are the
speed of the vehicle, v (m/sec), the horizontal dilution of precision (HDOP), the
perpendicular distance to the link, PD (m) and the heading error, HE (degrees)
which is the absolute difference between the direction of the vehicle and the
direction of the link. The output of this FIS, L1, is the probability of matching
the position fix to a candidate link. In the fuzzification process, sigmoidal MF
are used as shown in Figure 4. The constants used to calculate the output, L1,
are low , (Z1) = 10, average , (Z2) = 50 and high , (Z3) = 100.

The fuzzy rules used in this FIS are:

� If (v is high) and (HE is small) then (L1 is average)

� If (v is high) and (HE is large) then (L1 is low)

� If (HDOP is good) and (PD is short) then (L1 is average)

� If (HDOP is good) and (PD is long) then (L1 is low)

� If (HE is small) and (PD is short) then (L1 is high)

� If (HE is large) and (PD is long) then (L1 is low)

A link is chosen as initial link if the FIS identifies it as the correct link for the
first few position fixes.
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Figure 4: Fuzzification of the inputs during the IMP

2.2.2 The subsequent map matching process (SMP)

The SMP starts after the successful execution of the IMP and is responsible for
the matching of the subsequent positions. It is split into two parts:

1. SMP along a link (SMP-1) checks if the vehicle has already crossed a
junction or is about to cross one and matches subsequent positions to the
link identified by the IMP if that is not the case (Quddus, 2006).

2. SMP at a junction (SMP-2) identifies a new link among the candidate
links if the vehicle has crossed a junction (Quddus, 2006).

Quddus (2006) describes them as follows.

SMP along a link (SMP-1) SMP-1 determines the possibility of matching
the subsequent position fix to the previously selected link. So there is no need
to create an error rectangle and look for candidate links.

The inputs needed for the FIS are the speed of the vehicle, v (m/sec), the HDOP,
∆d (m), the heading increment, HI, α (degree) and β (degree), where
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� ∆d: the difference between the distance from the last matched position
to the downstream junction and the distance traveled by the vehicle since
the last position fix

� HI: the absolute difference between the direction of the vehicle at the
current position and the last position

� α and β: location of the current position fix, relative to the link, seen from
the last matched position and from the downstream junction respectively.

Additionally it is possible to use the gyro-rate reading, ∆θ, but this is data
not recorded by enviroCar and probably not accessible with most smartphones.
Therefor we will not use the gyro-rate reading as input to the FIS.
The fuzzy rules (without gyro-rate) for this FIS are:

� If (α is below 90 ) and (β is below 90 ◦ ) then ( L2 is high)

� If (∆ d is positive) and (α is above 90 ◦) then ( L2 is low)

� If (∆ d is positive) and (β is above 90 ◦) then ( L2 is low)

� If (HI is small) and (α is below 90 ◦) and (β is below 90 ◦) then (L2 is
high)

� If (HI is small) and (∆d is positive) and (α is above 90 ◦) then (L2 is low)

� If (HI is small) and (∆d is positive) and (β is above 90 ◦) then (L2 is low)

� If (HI is large) and (α is below 90 ◦) and (β is below 90 ◦) then (L2 is low)

� If (HDOP is good) and (v is zero) then (L2 is high)

� If (HDOP is good) and (∆d is negative) then (L2 is average)

� If (HDOP is good) and (∆d is positive) then (L2 is low)

� If (v is high) and (HI is small) then (L2 is average)

� If (HDOP is good) and (v is high) and (HI is 180 ◦) then (L2 is high)

The output of the FIS, L2, is a threshold value used to determine if the position
fix should be matched to the previously selected link. According to Quddus
(2006) a value of 60 is adequate to assume the vehicle is still on the same link.
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SMP at a junction (SMP-2) As described in Quddus (2006) the SMP-2
is used when the vehicle is either about to cross or has just crossed a junction.
SMP-2 basically works the same way IMP does but with two additional input
variables and four additional rules.

The new variables are link connectivity and distance error (m). The link con-
nectivity simply tells if a candidate link is directly connected to the previous
selected link or not and the distance error is the difference between the distance
traveled from the last position (calculated from the speed of the vehicle) and
the shortest path from the last matched position to the current position along
the links.

The new fuzzy rules involving these variables are:

� If (The connectivity with the previous link is low) then (The L3 is low)

� If (The connectivity with the previous link is high) then (The L3 is high)

� If (The distance error is low) then (The L3 is high)

� If (The distance error is high) then (The L3 is low)

The output of the FIS, L3, is the likelihood of a candidate link to be the correct
link.

2.2.3 Determination of the vehicle location on a link

After the right link among the candidate links is found the vehicle location on the
link is needed. For determining the vehicle location on a link Quddus (2006)
describes an optimal estimation technique. Unfortunately this also involves
the calculation of the VCV, which cannot be done because of the lack of the
necessary data in the enviroCar trajectories. So in this research the vehicle
location on a link will be determined using an orthogonal projection of the
position fix on the link. This is not an optimal solution but a sufficient one
since the main challenge is to find the correct links for the GPS positions.

3 Implementation

After the description of the fuzzy logic map matching algorithm this section
now describes its implementation in R (R Core Team, 2013). It talks about
the needed inputs, creation of the digital road network and shows how the
implementation of the different parts of the algorithm such as IMP, SMP and
FIS was handled. It also talks about problems or challenging aspects in each
part of the implementation.
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3.1 Structure

We have seen that the algorithm itself consists of several different parts and
so does the implementation. The first steps were to think about the inputs
needed and acquisition of map data that fulfills the requirements to do the map
matching. The next step was to find a way to implement the three different
FIS that are a core element of the IMP and the SMP. After the implementation
of the FIS, the IMP and the SMP were implemented and everything was put
together.

3.2 Input

The input to the fuzzy logic map matching algorithm is a SpatialPointsDataFrame
as defined in the sp package (Bivand et al., 2013). It contains the coordinates
of the GPS trajectory that needs to be matched to a digital road network.
Additionally it must include following data to be processed by the algorithm:

� GPS.Speed in km/h

� GPS.Bearing

� GPS.HDOP

� time as “POSIXct” or “POSIXlt”

A projection also must be specified. Missing values in the data are replaced
with zeros and can lead to incorrect matchings of the corresponding points and
of the subsequent points.

3.3 Digital road network

The digital road network is one crucial component needed in the map matching
process and not fairly hard to obtain because there is no implementation of a
class in R that fulfills all the needs required by the algorithm. Several R packages
exist that allow the import of map data from different sources but mostly in
form of raster data which is not suitable for this algorithm.

As seen in Chapter 2 we need a digital road network that allows us to do short-
est path calculations, get information about link connectivity, get the length of
the links etc. To achieve this we use the osmar (Eugster & Schlesinger, 2010),
igraph (Csardi & Nepusz, 2006) and sp (Bivand et al., 2013) packages to im-
plement a structure usable in the map matching process.
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First of all the road data is obtained from OpenStreetMap6 (OSM) using the
Overpass API7. The advantage of this API is that it allows to get data from
OSM by search criteria such as location, tag, properties etc. In R a request to
obtain the data looks as follows:

> url <- paste0("http://www.overpass-api.de/api/xapi?way

+ [bbox=",x1,",",y1,",",x2,",",y2,"][highway=*]")

> response <- getURL(url, .encoding = "UTF-8")

This request gets all the features inside the bounding box that are tagged as
highways, which means we download almost no unnecessary data. The coordi-
nates for the bounding box are obtained from the bounding box of the input
file, the SpatialPointsDataFrame.

Then we transform the data into an osmar object. This allows us to further
filter the data and remove features we do not need (e.g. cycle ways, foot ways,
bridleway etc.) using the tags of the OSM features. This needs to be done to
prevent errors such as matching vehicle positions to cycle ways running close to
the roads.

> resp <- xmlParse(response)

> roads <- as_osmar(resp)

> # Get ID's of all streets used by cars

> id <- find(roads,

+ way(tags(k == "highway" & !(v %in% c("cycleway",

+ "footway", "bridleway",

+ "steps", "path")))))

> roads <- subset(roads, ids = find_down(roads, way(id)))

The next step is to create an igraph object from the the osmar object. This
allows us to calculate the shortest path between nodes and the length of the
shortest path. This is fairly easy because the length of the line segments in the
osmar object, given in meters, is the weight of the edges in the graph. This is
useful in SMP-2 where shortest path calculation is needed.

> graph <- as_igraph(roads)

> graph <- as.undirected(graph, mode = "each")

Now we can transform the osmar object into a SpatialLines object where each
line is split into its segments.

6http://www.openstreetmap.org
7http://overpass-api.de/
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> roads <- as_sp(roads, "lines")

> roads <- lines2segments(roads)

The edges of the graph now correspond to the line segments in the SpatialLines
object. This combination allows us to find the roads inside the error rectangle
and then the corresponding nodes in the graph, which makes it easy to obtain
the needed shortest paths and connections between edges. Now we can combine
the graph and the SpatialLines into a DigitalRoadNetwork.

> setClass("DigitalRoadNetwork",

+ representation(sl = "SpatialLines", g = "igraph"),

+ validity = function(object) {

+ stopifnot(length(object@sl) == length(E(object@g)))

+ })

> roads <- new("SpatialNetwork", sl = roads, g = graph)

This DigitalRoadNetwork allows us to do the map matching.

It should be noted that this process can be very time consuming if data of
very large areas or areas with high road density needs to be downloaded and
processed.

3.4 Implementing the FIS

As already mentioned in Chapter 2 the FIS is a core element of the algorithm.
In total three different FIS are needed, one for the IMP, one for the SMP-1 and
one for the SMP-2. The implementation of the FIS was done using the frbs

package, which allows the creation of different FIS, such as Mamdani’s FIS,
Sugeno’s FIS etc. (Riza et al., 2013). The implementation will be shown using
the FIS for the IMP as an example.

The first steps in this process are very straightforward. First thing we need to
do is define the model of the FIS. The FIS we are using is Sugeno’s FIS and the
corresponding model in frbs is the Takagi Sugeno Kang (TSK) model.

> type.model <- "TSK"

Next we set the implication function (minimum function) used to get the degree
of applicability of each rule.

> type.implication.func <- "MIN"

12



We also have to provide the names of the input variables, the fuzzy subsets of
each input variable, the number of fuzzy subsets of each variable and the range
of the fuzzy subsets (e.g. speed is high (3-6 m/s) ), which is very easy and
therefore will not be further explained here.

The fuzzy rules need to be stored in matrix form which requires them to be of
the same length. This means each rule must include all of the input variables.
Of course not every variable is needed in each rule. In this case the fuzzy subset
for the variable becomes “dont care”. For example, the fuzzy rules

� If x is A and y is B then Z = f(x,y)

� If x is C then Z = f(x,y)

need to be written as

� If x is A and y is B then Z = f(x,y)

� If x is C and y is dont care then Z = f(x,y)

We define the matrix containing the rules as follows:

> r1 <- c("high","and","small","and","dont_care",

+ "and","dont_care", "->")

> r2 <- c("high","and","large", "and", "dont_care",

+ "and", "dont_care", "->")

> # ...

> r5 <- c("dont_care", "and", "small","and","short",

+ "and", "dont_care", "->")

> r6 <- c("dont_care", "and", "large","and","long",

+ "and", "dont_care", "->")

> rule1 <- list(r1, r2, r3, r4, r5, r6)

> rule1 <- do.call(rbind, rule2)

It is important to note that the variable names are not mentioned in the defini-
tion of the rule and there is also no entry for the then-part of the rules.

The linear functions in the then-part of the rules are defined in a separate matrix,
where the number of rows corresponds to the number of rules and the number
of columns is the number of variables +1. Since we only use constants, such as
Z1 = 100, we are only interested in the last column. This allows us to define
the matrix with just one column containing the constants for each rule.

> ## Define linear functions of TSK

> func.tsk1 <- matrix(c(50, 10, 50, 10, 100, 10),

+ nrow = 6, byrow = TRUE)
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The most challenging part in the implementation of the FIS is the definition of
the MF. They are defined in a matrix containing the parameters to form the
MF. The number of rows is 5 and the number of columns is the number of fuzzy
subsets used in the FIS. The number in the first row defines the type of the MF,
such as triangle, trapezoid, sigmoid, etc. and the following rows are filled with
the parameters of the functions. The problem is that we mostly use sigmoidal
MF, as seen in Figure 4. In Riza et al. (2013) these are defined as

f(x) =
1

(1 + e−b(x−c))

where b is the slope at the crossover point c.

So the parameters we need are b and c. Unfortunately these are not given and
need to be calculated from the left and right bounds of the fuzzy subsets. To
do so we use the function get params:

> get_params <- function(l, r, shape = c("s", "z")) {

+ shape <- match.arg(shape)

+ if (shape == "s")

+ y <- c(0.01, 0.5, 0.99)

+ else

+ y <- c(0.99, 0.5, 0.01)

+ x <- c(l, (l + r)/2, r)

+ slope <- ifelse(shape == "s", 1/(r - l), 1/(r - l))

+ data <- list(x = x, y = y)

+ fitModel <- nls(y ~ a/(1 + exp(-b * (x - ((l + r)/2)))),

+ data, start = c(a = 1, b = slope),

+ algorithm = "port")

+ # get the coefficients using the coef function

+ params <- coef(fitModel)

+ params[2]

+ }

This function takes the left, l, and right, r, bound and the shape of the sigmoidal
MF (s = ascending, z = descending) as input and calculates parameter b using
the nls function. The crossover point, c, is simply (l + r)/2.

The default bounds are taken from Quddus (2006). Of course the user can
adjust the MF to his needs by changing the range of the fuzzy subsets of each
variable. For example, the default range of the fuzzy subset high of the variable
speed is 3 - 6 (m/sec), which can be looked up using get var bounds(). Using
the function set var bounds allows to change the range of the fuzzy subsets and
update mf() updates the MF and the FIS.

The matrix containing the parameters of the MF is then filled using the above
implemented get params function.
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> matrix(c(6, get_params(var_bounds[1, 1], var_bounds[1, 2], "s"),

+ get_mid(var_bounds, 1), NA, NA, #speed_high

+ 6, get_params(var_bounds[2, 1], var_bounds[2, 2], "z"),

+ get_mid(var_bounds, 2), NA, NA, #sped_low

+ 6, get_params(var_bounds[3, 1], var_bounds[3, 2], "z"),

+ get_mid(var_bounds, 3), NA, NA, #speed_zero

+ # ...

+ 6, get_params(var_bounds[8, 1], var_bounds[8, 2], "z"),

+ get_mid(var_bounds, 8), NA, NA, #HDOP_good

+ 6, get_params(var_bounds[9, 1], var_bounds[9, 2], "s"),

+ get_mid(var_bounds, 9), NA, NA), #HDOP_bad

+ nrow = 5, byrow = FALSE)

The FIS is created by the frbs.gen function, taking all of the above as input.

3.5 IMP and SMP

Now that the digital road network and the FIS are prepared, we can implement
the IMP and SMP. Since these processes share lots of common elements such
as the identification of candidate links and preparing input data for the FIS we
will not discuss each process individually. Below some of the more important
aspects of these processes are discussed.

3.5.1 Error region

The error region is used in IMP and SMP-2. It is setup on a position fix to
get the candidate links for the map matching. As already said in Chapter 2
we cannot use the method described in Quddus (2006) to obtain the size of the
error rectangle, so we will use a fixed size based on the horizontal error of GPS.
According to DoD (2008, B-37) there is a “99.9% availability of a horizontal
accuracy of 38.2m 95% or better any random time at any random location”.
This means there is a probability of 95% or better that the measured position
lies within a circle with a radius of 38m around the true position. So we create
the error region as a SpatialPolygon with each side being 2 · 38m long as seen
in Figure 5.

Using the rgeos package (Bivand & Rundel, 2013) we can get the ID’s of the
links lying within the error region or intersecting the error region. These links
are the candidate links used for the map matching.

> candidate_links <- data.frame(

+ edge_id = unique(c(which(gIntersects(rec, roads@sl, byid = TRUE)),

+ which(gContains(rec, roads@sl, byid = TRUE)))))
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Figure 5: Error region

3.5.2 Bearing and shortest distance to line

To calculate the bearing of the links and the shortest distance of a GPS position
to a certain link we use the geosphere package (Hijmans, 2014). Bearing and
shortest distance to line are both important in the IMP and SMP-2 and are
acquired using the bearing and dist2Line functions. Additionally dist2Line
does not only calculate the shortest distance to a line but also the nearest point
on the line. This is very useful because the nearest point on the line is the point
the GPS position is matched to, as described in Chapter 2.

3.5.3 Link connectivity

For the SMP-2 it is important to know which links are connected. This can be
checked using the graph of the road network. The igraph class allows to get all
edges starting at a specific node which allows to solve the problem easily.

> candidate_links$conn <- sapply(candidate_links[,c("edge_id")],

+ function(x) {

+ conn_edges <- E(roads@g)[from(prev_link_end)]

+ if (isTRUE(any(as.vector(conn_edges) == x))) 1 else 0})
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This simply checks if any of the candidate links is connected to the endpoint of
the last selected link.

3.5.4 Shortest path

For the SMP-2 we also need to calculate the shortest path between the last
selected link and the candidate links. To do this we use the graph of the street
system. Since we do not know which node of the candidate link is the nearest we
calculate the shortest path to both nodes and choose the one with the shortest
distance.

> sp <- as.data.frame(do.call(rbind, lapply(1:nrow(candidate_links),

+ function(x) {

+ spV1 <- shortest.paths(roads@g, prev_link_end,

+ candidate_links$V1[x])

+ spV2 <- shortest.paths(roads@g, prev_link_end,

+ candidate_links$V2[x])

+ if (spV1 < spV2) {

+ c(candidate_links$V1[x], spV1)

+ } else {

+ c(candidate_links$V2[x], spV2)}}

+ )))

> candidate_links$cl_vertex <- as.character(as.vector(sp[,1]))

> # length of the shortest path (m)

> candidate_links$sp <- as.numeric(as.vector(sp[,2]))

3.6 Output

The output of the algorithm is also a SpatialPointsDataFrame containing the
matched coordinates of each GPS position and the corresponding data. In
addition, for each position the OSM ID of the link it is matched to is included.

4 Testing

This section talks about testing of the above implemented fuzzy logic map
matching algorithm. It describes the data used and the results of the testing.
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4.1 Data

As already mentioned the test data comes from the enviroCar project. It is
real field data submitted by users of the project. Unfortunately not all user
submitted trajectories can be used for testing, because not all of them include
the necessary data (HDOP, GPS.Bearing and GPS.Speed) required by the algo-
rithm. The reason for this is that the recording of this data was not implemented
in former versions of the app. So everyone using an outdated version off the app
will continue uploading trajectories without this data.

An additional problem is that sometimes there are missing values in the data.
This mainly occurs for the bearing if the speed of the vehicle is very low or zero
and leads to an error in the FIS. The problem can be solved by just replacing
the missing values with zeros, which of course can lead to incorrect matchings.

A positive aspect is, that there is data available for both, rural and urban areas,
including complex structures such as roundabouts, complex urban road networks
and motorway junctions, which is very suitable for testing. The trajectories used
for testing all lie in or around the city of Münster, because this area contains
almost all available trajectories.

The map data used for testing is acquired from OSM as described above.

4.2 Results

Since only the user submitted trajectories are available without any correspond-
ing true data for the vehicle locations it is of course hard to tell if the algorithm
finds the correct links. So what we can do is looking for obvious mismatches
and in what situations they occur.

In rural areas the map matching algorithm works very well (Figure 6). The
road density is low and the GPS positions are often more accurate than in
urban areas, which makes the identification of the correct links easier.

Of course the vehicle position on the link is often not very accurate because the
nearest point on the link is chosen as the vehicle’s location on the link.

Link identification in urban areas also works surprisingly well. Even though the
road density is much higher than in rural areas and the GPS positions often lie
way off the the actual roads, the algorithm still manages to identify the correct
links as shown in Figure 7. But here you can also see a problem associated with
the way the vehicle’s position on the link is determined. Even if the algorithm
may identify the correct link, the position on the link often becomes the end
node of the link, if the GPS position lies ahead of the link.
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Figure 6: Map matching in rural areas

Figure 7: Map matching in urban areas

In general most of the identified links look correct or proper. Even more complex
structures such as roundabouts are normally no problem. Obvious mismatches
only occur in very complex structures with lots of roads and bends on a small
area such as motorway junctions, which can be seen in Figure 8. Sometimes
they also occur on roads with several lanes, where some positions get matched
to the wrong lane and of course if values in the data are missing.
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Figure 8: Mismatch on a motorway junction

5 Conclusions and Recommendations

The main goal of this thesis was the implementation of reliable map matching
algorithm to support the enviroCar project. This Chapter summarizes the re-
sults obtained in this research. Additionally some recommendations are made
regarding the problems with the GPS trajectories obtained from enviroCar and
regarding improvements of the here implemented algorithm.

5.1 Conclusions

In this thesis a fuzzy logic map matching algorithm, suitable to take care of the
map matching in the enviroCar project, was implemented. This algorithm was
chosen because of its very good performance in terms of link identification. It
was successfully implemented in R according to its description in Quddus (2006).
However, some small changes were necessary.

As described in Chapter 2 and 3 it was not possible to calculate the VCV
associated with the errors in the computed GPS position because the data to
do so was not obtainable from the GPS trajectories. This caused modifications
in some parts of the algorithm such as the creation of the error region and the
determination of the vehicle’s position on a link. This means the error region,
used for identification of candidate links, was implemented with a fixed size and
the vehicle’s position on link is simply determined using the nearest point on
the link. Of course this is not an optimal solution but it does not influence
the algorithms primary function, the identification of the links the vehicle is
traveling on.
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So the result of this thesis is an R package that is capable of matching GPS
trajectories to an OSM road network using a fuzzy logic based map matching
algorithm.

Finally, it is important to note that although the here implemented algorithm
is working there are still some issues to look into. Problems at the moment
are that the algorithm is not usable with all available trajectories of enviroCar,
because some of the trajectories do not include all required data and another
problem is that the acquisition of the road data can be very time consuming.

5.2 Recommendations

As already mentioned the main motivation for the implementation of the map
matching algorithm was the enviroCar project. At the moment not all available
trajectories include all the necessary data for the algorithm to work because of
trajectories uploaded from former versions of the enviroCar app. These trajec-
tories could be removed or flagged to solve this minor problem.

In future app versions data to obtain the VCV, which can be used to derive
the error rectangle and to better estimate the vehicle position on the link could
be included into the trajectories. Of course this is something the enviroCar
developers have to decide.

An improvement to the performance of the algorithm could be a different source
to obtain the road data. As described in Chapter 3, at the moment, the algo-
rithm needs to download and process the data each time it is executed to create
a digital road network. This can be very time consuming depending on the size
of the area and the amount of features included in the area. If the working area
is known, a digital road network prepared in advance could greatly increase the
performance in terms of run-time.
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Acronyms

ATTS Advanced Transport Telematics Systems

FIS Fuzzy Inference System(s)

GPS Global Positioning System

HDOP Horizontal Dilution of Precision

HE Heading Error

IMP Initial Map Matching Process

MF Membership Function(s)

OSM OpenStreetMap

PD Perpendicular Distance

SMP Subsequent Map Matching process

SMP-1 Subsequent Map Matching process along a link

SMP-2 Subsequent Map Matching process at a junction

VCV Variance-covariance matrix
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