
Statistics for spatio-temporal data:
an introduction

Edzer Pebesma

1. Das neue IfGI-Logo 1.6 Logovarianten

Logo für den Einsatz in internationalen bzw.

englischsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

ifgi

ifgi

Institute for Geoinformatics
University of Münster

ifgi

Institut für Geoinformatik
Universität Münster

Logo für den Einsatz in nationalen bzw.

deutschsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

Dieses Logo kann bei Anwendungen

eingesetzt werden, wo das Logo besonders

klein erscheint.

Einsatzbereiche: Sponsorenlogo,

Power-Point

Größe bis 40 mm Breite

Geostat Summer School, Bergen, 15-21 Jun 2014

1 / 30

All data are spatio-temporal

1. There are no pure-spatial data. Maps reflect either

I a snapshot in time (remote sensing image)

I an aggregate over a time period (e.g., interpolated yearly
average temperature, or yearly aggregated daily interpolations)

I something that is constant over a period of time (political
boundary)

I a seemingly non-changing phenomenon (geology)

2. There are no pure-temporal data. Time series reflect either

I spatially aggregated values (global temperature curves)

I a single spatial location (air quality sensor DEUB032, at
8.191934E,50.93033N)

I vaguely located, or universal aggregates (world market prices,
stock quotes)

8 / 30

Functions

We can write function y = f (x) as:

f : X → Y

which means that for any X , we have a corresponding Y .

X ×Y

is the Carthesian product, the collection of all ordered pairs (x , y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X ×Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every x in X there is exactly
one element y such that the ordered pair (x , y) is contained in the
subset defining the function f .”
X is called the domain, Y the codomain or range

9 / 30

Functions

We can write function y = f (x) as:

f : X → Y

which means that for any X , we have a corresponding Y .

X ×Y

is the Carthesian product, the collection of all ordered pairs (x , y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X ×Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every x in X there is exactly
one element y such that the ordered pair (x , y) is contained in the
subset defining the function f .”
X is called the domain, Y the codomain or range

9 / 30

Functions

We can write function y = f (x) as:

f : X → Y

which means that for any X , we have a corresponding Y .

X ×Y

is the Carthesian product, the collection of all ordered pairs (x , y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X ×Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every x in X there is exactly
one element y such that the ordered pair (x , y) is contained in the
subset defining the function f .”
X is called the domain, Y the codomain or range

9 / 30

Functions

We can write function y = f (x) as:

f : X → Y

which means that for any X , we have a corresponding Y .

X ×Y

is the Carthesian product, the collection of all ordered pairs (x , y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X ×Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every x in X there is exactly
one element y such that the ordered pair (x , y) is contained in the
subset defining the function f .”
X is called the domain, Y the codomain or range

9 / 30

Inverse functions

for a set of values B in the range,

f −1(B) = x ∈ X : f (x) ∈ B

for a single value b in the range,

f −1(b) = x ∈ X : f (x) = b

the resulting set may contain any number of elements.
Example: f : X → X 2, the range (Y) value 4 has corresponding
domain values {−2, 2}.

10 / 30

Reference systems

Reference systems are conventions that encode the shared
understanding of information. Examples are

I spatial (coordinate) reference systems (where is (52,8)?)

I temporal reference systems (what does

> Sys.time()

[1] "2014-06-18 08:57:55 CEST"

mean?

I attribute reference systems (e.g., UCUM, Unified Code for
Units of Measure)

I semantic reference systems (vocabularies, ontologies, R
function index)

11 / 30

Space, Time, Attribute, Identity

We will look at the following four reference system domains:
S space 1,2,3-dimensional, e.g. 2D degrees in

WGS84, R2 or R3, continuous
T time 1-dimensional or cyclic, R, sometimes 2-

dimensional, continuous
Q quality 1-dimensional (UCUM), higher-dimensional:

functional, multivariate, also possibly nomi-
nal, ordinal, interval (Stevens’ 1946)

D discrete indicating distinct entities (objects, events);
N, IDs, primary key in RDBMS, row number
in data.frame

12 / 30

Fields

functional form:
(S × T)→ Q

I Answers: “what is then and there?”

I Inverting answers: “when/where was that?”

I Specialisations: S → Q , T → Q

I Incarnations: points (sampled field: meuse), contour lines,
coverage

13 / 30

Field examples: grid, points

log(zinc, ppm), interpolated

5.0

5.5

6.0

6.5

7.0

7.5

zinc (ppm)

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●
●

●●●
●

●
●●●

●
●

●

●
●● ●

●●
●

●●
●

●

●●

●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

● ●
●●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

●

●

●

●

●

[113,458.2]
(458.2,803.4]
(803.4,1149]
(1149,1494]
(1494,1839]

Field examples: lines, polygons

x

y

5.0
5.0

5.0
5.0

5.0
5.0

5.0

5.0

5.5
5.5

5.5

5.55.5 5.5

5.5
5.5

5.55.5

5.5
5.5

5.5 5.5

5.5

6.0

6.0

6.0

6.0

6.0

6.5

6.5

6.5
6.5

6.5
6.5

6.5

6.5

6.5

6.5

6.5

7.07.0

7.0

7.0

[4,4.5]

(4.5,5]

(5,5.5]

(5.5,6]

(6,6.5]

(6.5,7]

(7,7.5]

(7.5,8]

Field: categorical coverage

16 / 30

Non-Field: choropleth, aggregation

17 / 30

Non-moving Entities (objects, events)

functional form:
D → (S × T ×Q)

(for objects without properties, take Q ≡ 1)
I Specialisations:

I D → (S ×Q): spatial point pattern,
I D → (T ×Q): temporal point pattern

18 / 30

Moving entities (objects, events)

functional form:
D → T → (S ×Q)

(for objects without properties, take Q ≡ 1)

I generalization of D → (S × T ×Q)

I specialisations: D → T → Q , D → S → Q

19 / 30

Support and aggregation

1. we cannot make observations of zero duration, or zero spatial
size; the actual size and duration are the measurement
support (footprint). Think: soil samples, RS cells.

2. often, we want to estimate or compute aggregated values, e.g.
over periods over areas.

3. even more often, the data we get were aggregated, for
convenience (size), or privacy concerns (health data).

20 / 30

Particulate matter time series, averaged over station
type

22 / 30

More complications ...

I “intermediate” phenomena: air quality in street canions
(“traffic”)

I true “hybrid”, 1: time events, spatial fields
I D → ((S → Q)× T)
I example: election maps

I true “hybrid”, 2: spatial events, time fields
I D → (S × (T → Q))
I example: emission from power plants

23 / 30

How to represent, and then store fields?

1. as functions! Interpolation functions return values at arbitrary
times, moments (gstat::idw in space, zoo::na.approx in
time)

2. as evaluated (or observed) functions, at
I discretized space, regular raster::raster or irregular

sp::SpatialPoints, or
I time, regular: stats::ts, or irregular: zoo::zoo, xts::xts

3. natural would be to use an index that relates to space and/or
time, and records with arbitrarily typed fields → arrays

4. netcdf, HDF5;

5. R: array (and raster?) do not support fields of mixed type

6. R for time: zoo, xts do not support fields of mixed type

7. R for space: sp::SpatialGridDataFrame do

8. R for space/time: spacetime does too,

9. big data array processing engine: SciDB

24 / 30

How to store objects/events?

Tables are one-dimensional arrays; The Spatial* objects in sp

“behave” like tables (data.frame).
Subsetting like x[3,"zinc"] works for all, except for
SpatialGridDataFrame.

25 / 30

I will assume you understand this:

> a = data.frame(varA = c(1,1.5,2),

+ varB = c("a", "a", "b"))

> a[1,]

varA varB

1 1 a

> a[1, drop=FALSE]

varA

1 1.0

2 1.5

3 2.0

> a[,1]

[1] 1.0 1.5 2.0

> a[1]

varA

1 1.0

2 1.5

3 2.0

> a[[1]]

[1] 1.0 1.5 2.0

> a["varA"]

varA

1 1.0

2 1.5

3 2.0

> a[c("varA", "varB")]

varA varB

1 1.0 a

2 1.5 a

3 2.0 b

> a$varA

[1] 1.0 1.5 2.0

> a$varA <- 3:1

> a

varA varB

1 3 a

2 2 a

3 1 b

Functional programming

I do it: learn apply, lapply, do.call,

I program generically, e.g. aggregate

27 / 30

Time, Time Series Data

1. POSIXt, Date, yearmon, yearqtr

2. zoo, xts, ?aggregate

3. forecast, ...

4. see Task View

28 / 30

Space, Spatial Data

1. Spatial*, raster,

2. rgdal, rgeos

3. see Task View

4. selecting records, variables

5. selecting based on spatial match

6. sp::aggregate

7. vignette("over") (or see CRAN page)

8. edit(vignette("over")), run, modify, run

29 / 30

Space-time, Spatiotemporal Data

1. spacetime, ST*, also raster,

2. back ends: PostGIS, TGRASS, SciDB

3. combines sp and xts

4. selection, aggregation

5. go through spacetime vignettes

6. see Task View

30 / 30

