
1The stohasti dimension in a dynami GISEdzer J. Pebesma, Derek Karssenberg and Kor de JongUtreht Centre for Environment and Landsape Dynamis, Faulty ofGeographial Sienes, Universiteit Utreht, P.O. Box 80.115, 3508 TCUtreht; e.pebesma�geog.uu.nlAbstrat. Coping with random �elds in a time-dynami geographi infor-mation system (gis) inreases the omputational burden and storage require-ments with a large amount, and alls for a number of ustom funtions toenable easy analysis of the resulting random omponents, as well as spe-ialised output reporting funtions. This paper addresses the omputationaland implementation issues when a Monte Carlo approah is taken, and showssome results from a rainfall-runo� model running within a gis.Keywords. Geographial information systems, Monte Carlo, temporal gis,stohasti modelling, geostatistis1 IntrodutionGeographial information systems (gis, Burrough and MDonnel, 1998) lib-erate the end-user from worrying about looping over all spatial entities byproviding a set of funtions that operate on maps as a whole. Suh funtionsoperate either point-wise, meaning that a result value exlusively depends onthe values in a set of maps at the same loation, or they operate in a spatialneighbourhood, meaning that values at other spatial loations ontribute aswell. A point-wise operation an be the addition of two maps,sum.map = a.map + b.mapa neighbourhood operation the alulation of distanes to a point loation:distanes.map = distaneto(point.map)Writing gis operations on maps as algebrai expressions was �rst proposedby Tomlin and Berry (1979), and they named it `map algebra'.Beyond the standard map algebra, praster (Wesseling et al., 1996) ex-tends the set of spatial-only, stati funtions with a set of funtions thathave a temporal dimension, by adding a loop over a (disretised) time axis:spatial time series (staks of maps) as well as aggregates over the iterationperiod an now be proessed and analysed. The thus obtained dynami gis(implemented as a onise modelling language) has shown to be an easy toolfor fast implementation of a wide range of spatio-temporal proesses, rangingfrom distributed hydrologial models to eologial dispersion or urban growthmodels (ellular automata). Easy ontrol over the modelling proess enablesusers with little expertise in gis or omputer programming to evaluate manysimilar but alternative models, by simply trying them out.Although some of the funtions provided by praster may ontain someform of randomness (e.g. a funtion returning a map with standard normali.i.d. variates), all funtionality regards deterministi omputation, meaningthat unertainty with respet to model input variables annot be handled. Inthe pratie of environmental modelling however, users are often onfrontedwith highly unertain model inputs, and want to be able to assess how inputerrors propagate to the output of their gis models.



2 Today, freely available geostatistial software tools (e.g. Deutsh and Jour-nel, 1998; Pebesma and Wesseling, 1998) provide the means for a fairlystraightforward modelling and simulation of spatial �elds for both disrete(nominal) and ontinuous variables, using the indiator simulation formalismfor the former and Gaussian random �elds for the latter. Using these maps asinput to gis models is far from easy though, and it may prevent large groupsfrom doing so for that reason.This paper disusses the onept of a stohasti (dynami) gis, and pro-poses a set of funtions that should be added to the gis to provide errorestimates of model output, oming from model input error. In a ase studyregarding the analysis of stream ow and surfae runo� during a rain storm,we analyse how unertainty on in�ltration apaity inuenes the model out-put, being spatial distribution of runo� and temporal variation of river owat the athment outlet.2 Stohasti GIS2.1 A Monte Carlo approahSpatial operations of a map algebra gis an be generalised as follows:frg = f(A;B;C; :::) (1)with frg a set of one or more maps where the output is written to, with f(�)a simple or ompound operation, and with input maps A, B, C,... (possiblyinluding some onstant maps). In a dynami gis (1) is evaluated everytime step, and the operation may involve an update of some maps for eahtime step. The hallenge in a stohasti gis is to haraterise the joint (thatis, multivariable) distribution funtion of frg over spae and time, given thejoint distributions of A, B, C,... . Analyti approahes (Heuvelink, 1998) haveaddressed analytial solutions to (1) for the ase where only non-spatials werestohasti. The only feasible approah to ases that inlude random spatialor spatio-temporal �elds appears to be a full spatio-temporal Monte Carlo(m) simulation (Heuvelink, 1998).The most general implementation for an m approah onsiders evaluationover the stohasti, temporal and spatial domain in the order:for m in MC-Samplefor t in TimeSteps< evaluate r >(evaluation of r trivially involves the looping over all spatial loations). Fora full analysis of the results, all output of eah m run has to be stored. Thisan be a full spatial time series for eah m run, or a single map (e.g. a statevariable at the last time step, or a map aggregate over time) or a non-spatialtime series (read from a loation in a map, or aggregated over spae), or anaggregated (salar) value over either of the latter two.Moving the m loop inside the time or spae loop may be more eÆient insome respets, but only works in highly simpli�ed ases, e.g. in absene oftemporal and spatial orrelation of the model input.2.2 The `stohasti' dimensionTaking the `randomness' as a new dimension, in the sense of spatial or tem-poral dimensions, an be justi�ed from both a oneptual and an operationalpoint of view. From a oneptual point of view, geographial spae, or the



3three-dimensional spae where we live in, is aptured by traditional gis (al-though most emphasis is traditionally put to the two `horizontal' dimensions).A temporal gis adds to this the temporal dimension, to apture hanges ofthe spatial settings over time. These four dimensions an thus be used torepresent everything we know. To add to this a representation of things wedo not know, for instane by probability density funtions (pdfs), we need atleast one more dimension. It may be argued that every point in spae/timethat needs a pdf adds one dimension, but usually easier representations aresought (for instane by assuming stationarity).From an operational point of view, the obvious regular disretisation of a3D-spae+time `blok' is a four-dimensional array. Using m analysis, thisarray is repliated a number of times equal to the m sample size. The obviousdisretisation of suh a stohasti 3D-spae/time blok is a �ve-dimensionalarray: The added index identi�es the m sample element.The onsequene of adding a stohasti dimension is that the modeller hasto take one more aspet into aount when hoosing the spatial disretisation(raster map ell size) and temporal disretisation (time step): the m samplesize. The total omputational burden (and, as we will see in the worst ase,storage requirements) is of order:<map ells> � <time steps> � <m sample size>A real danger will be that naive users hoose a small sample m size beausethey prefer high-resolution maps, and end up with highly inaurate estimatesof model output distributions.3 Analysis of the Monte Carlo outputTo obtain the omplete results from the m analysis, the full output has tobe retained: for instane the umulative probability density funtion of r ata given time and loation is estimated from the ranked m sample valuesat this time and loation. Also, this output may serve as input to anotherfuntion, say g(�): p = g(r; :::)An example of g(�) is spatial aggregation of output of the funtion f(�), whihshould be applied to everym sample element (Heuvelink and Pebesma, 1998;Pebesma and Heuvelink 1999).To summarise all marginal umulative probability density funtions, atthe ost of loosing information of the joint density of r, one an use twoapproahes that di�er strongly with respet to storage requirements:1. ollet a set of perentiles, e.g. the 5-,10-,25-,50-,75-,90-,and 95-perentile,2. ollet the sum, sum of squares, sum of ube squares, ... and the frequenyof sample elements being above a set of pre-de�ned thresholds.The seond option gives the possibility of estimating for eah loation andtime the mean, variane, skewness and kurtosis, and probabilities of exeedingthresholds.Estimation of the perentiles of a distribution requires that the full set of msample elements is stored, beause they need to be ranked before perentilesan be estimated. It should be noted here that for very high or low perentilessome gain is obtained by only storing the n tail values, with n � qN , with qthe quantile estimated and with N the m sample size. In general however,the full output distribution is of interest, eliminating this advantage.
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Fig. 1. (a) Rainfall, measured at the three gauges (see Fig. 2b) in mm/6h; (b)runo� at the athment outlet: 2.5- and 97.5-perentiles and median value in m3/hThe seond group of summary variables has the attrative property thatthey an be olleted without storing the omplete set of m sample ele-ments: they an be obtained by traking all the neessary sums during them simulation, and after eah m run the previous results an be disarded.4 Case study: rainfall-runo� simulationRainfall-runo� modelling an be useful for prediting river oods, soil mois-ture ontents, soil erosion, and eventually landsape evolution, in undulat-ing or hilly athments. A simple rainfall-runo� simulation model for the0.42 km2 Catsop athment (Limburg, The Netherlands) was implementedin praster. It evaluates for eah time step: (1) when rainfall intensity exeedsthe soil in�ltration apaity, the soil beomes saturated and exess rainfallwill run o� downhill; (2) surfae runo� is routed through a drainage networkand will either re-in�ltrate in subsequent non-saturated ells, or leave theathment at its outlet.Rainfall at eah loation is obtained by reading the rainfall time series data(Fig. 1a) from the nearest rainfall gauge (Fig. 2b) at that moment. The loaldrain diretion map de�ning the runo� network is derived from the elevationmap (Fig. 2a); and in�ltration is modelled as a funtion of soil texture (Fig.2b). Mean values for in�ltration were 2.8 (lay), 8.3 (loam) and 19.0 (sand)[mm/6h℄. Standard deviations were taken as one third of the mean value, andthe semivariane between in�ltration at two sites a distane h (h > 0) apartwithin the same soil texture lass was modelled as an exponential variogram(h) = �2(s)(1� 0:9 exp(�h=50));with �2(s) the soil-dependent variane (variane and spatial orrelation in-formation were obtained from Loague and Kyriakidis, 1997).Simulation of in�ltration apaity was done by sequential Gaussian simula-tion (Deutsh and Journel, 1998). Negative simulated values were reset to azero value. To inrease the m sampling eÆieny, Latin hyperube sampling(Pebesma and Heuvelink, 1999) was applied. A sample of 1000 in�ltrationapaity maps was obtained to study the e�et of unknown in�ltration a-paity on spatial patterns of runo� (Fig. 3) and time series of runo� at theathment outlet (Fig. 1b).The results show that the unertainty inreases with runo� levels, but thatthe errors are small ompared to the modelled runo� levels. Atual runo�
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Fig. 2. (a) map of altitude (grey shades; units m above sea level) and loal draindiretions (drawn lines); (b) map of soil texture and loation of rain gauges; mappedarea is 1 km � 0.8 km
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Fig. 3. (a) Median runo� at time step 20; (b) width of the empirial 95% on�deneinterval at time step 20measurements should be used to assess whether the errors in in�ltrationas they are modelled here an aount for the model predition errors. Inaddition, in�ltration measurements should have been used for a more realistiassessment of spatial errors in in�ltration.5 DisussionA stohasti dynami gis an be obtained when one dimension is added toa gis that provides a temporal dimension. We do not yet provide suh an



6environment in the praster projet, but all omponents required (a mapalgebra pakage; stohasti spatio-temporal simulation of disrete or ontin-uous random �elds, and stohasti output analysis funtions) are available.The bottlenek is a onvenient data struture that allows higher dimensionalmapping.When a stohasti gis environment is provided, the question arises howa suitable m sample size an be reommended to non-expert users. Thisdepends trivially on whih results (e.g., means or tail perentiles) are needed,but general guidelines suh as they exist for bootstrapping methods still haveto be developed. In addition, simple methods to experimentally determinethe auray (sampling error) of estimated m sample statistis, suh asrepeated Latin hyperube sampling (Pebesma and Heuvelink, 1999) shouldbe provided.Bigger hallenges than handling random �elds in a gis are the omparisonand ritial evaluation of alternative gis model strutures, by analysing modelresiduals (observed minus predited values). One of the questions a stohastidynami gis an help to answer is whether the unertainty with respet togis model input an ompletely aount for the variation in model residuals.AknowledgmentsThis paper was written while the �rst author was a visiting sholar at theDepartment of Geologial and Environmental Sienes at Stanford University.The Netherlands Organisation for Sienti� Researh (NWO) supported thisvisit with a travel stipend.ReferenesBurrough, P.A., and MDonnell, R.A. (1998). Priniples of GeographialInformation Systems. Oxford: Oxford University Press.Deutsh, C.V. and Journel, A.G. (1998) GSLIB Geostatistial Software Li-brary and User's guide, seond edition. New York: Oxford UniversityPress.Heuvelink, G.B.M. (1998), Error Propagation in Environmental Modellingwith GIS, London: Taylor & Franis.Heuvelink, G.B.M. and E.J. Pebesma (1999) Spatial aggregation and soilproess modelling. Geoderma 89, 47-65.Kros, J., Pebesma, E.J., Reinds, G.J., Finke, P.A. (1999)Unertainty assess-ment in modelling soil aidi�ation at the European sale: a ase study.Journal of Environmental Quality 28 (2), 366-377.Loague, K., and Kyriakidis, P.C. (1997) Spatial and temporal variabilityin the R-5 in�ltration data set: D�ej�a vu and rainfall-runo� simulations.Water Resoures Researh 33 (12), 2883-2895.Pebesma, E.J., and Wesseling, C.G. (1998) Gstat, a program for geosta-tistial modelling, predition and simulation. Computers & Geosienes,24(1), 17-31. Software at http://www.geog.uu.nl/gstat/Pebesma, E.J., Heuvelink, G.B.M. (1999) Latin hyperube sampling of Gaus-sian random �elds, Tehnometris 41(4), 303-312.Tomlin, C.D., and Berry, J. (1979) A Mathematial Struture for Carto-graphi Modeling and Environmental Analysis. In: Proeedings of theACSM, 269-283.Wesseling, C.G., Karssenberg, D., Van Deursen, W.P.A. and Burrough, P.A.(1996) Integrating dynami environmental models in GIS: the develop-ment of a Dynami Modelling language. Transations in gis 1, pp 40-48.Software at http://www.geog.uu.nl/praster/


