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t. Coping with random �elds in a time-dynami
 geographi
 infor-mation system (gis) in
reases the 
omputational burden and storage require-ments with a large amount, and 
alls for a number of 
ustom fun
tions toenable easy analysis of the resulting random 
omponents, as well as spe-
ialised output reporting fun
tions. This paper addresses the 
omputationaland implementation issues when a Monte Carlo approa
h is taken, and showssome results from a rainfall-runo� model running within a gis.Keywords. Geographi
al information systems, Monte Carlo, temporal gis,sto
hasti
 modelling, geostatisti
s1 Introdu
tionGeographi
al information systems (gis, Burrough and M
Donnel, 1998) lib-erate the end-user from worrying about looping over all spatial entities byproviding a set of fun
tions that operate on maps as a whole. Su
h fun
tionsoperate either point-wise, meaning that a result value ex
lusively depends onthe values in a set of maps at the same lo
ation, or they operate in a spatialneighbourhood, meaning that values at other spatial lo
ations 
ontribute aswell. A point-wise operation 
an be the addition of two maps,sum.map = a.map + b.mapa neighbourhood operation the 
al
ulation of distan
es to a point lo
ation:distan
es.map = distan
eto(point.map)Writing gis operations on maps as algebrai
 expressions was �rst proposedby Tomlin and Berry (1979), and they named it `map algebra'.Beyond the standard map algebra, p
raster (Wesseling et al., 1996) ex-tends the set of spatial-only, stati
 fun
tions with a set of fun
tions thathave a temporal dimension, by adding a loop over a (dis
retised) time axis:spatial time series (sta
ks of maps) as well as aggregates over the iterationperiod 
an now be pro
essed and analysed. The thus obtained dynami
 gis(implemented as a 
on
ise modelling language) has shown to be an easy toolfor fast implementation of a wide range of spatio-temporal pro
esses, rangingfrom distributed hydrologi
al models to e
ologi
al dispersion or urban growthmodels (
ellular automata). Easy 
ontrol over the modelling pro
ess enablesusers with little expertise in gis or 
omputer programming to evaluate manysimilar but alternative models, by simply trying them out.Although some of the fun
tions provided by p
raster may 
ontain someform of randomness (e.g. a fun
tion returning a map with standard normali.i.d. variates), all fun
tionality regards deterministi
 
omputation, meaningthat un
ertainty with respe
t to model input variables 
annot be handled. Inthe pra
ti
e of environmental modelling however, users are often 
onfrontedwith highly un
ertain model inputs, and want to be able to assess how inputerrors propagate to the output of their gis models.



2 Today, freely available geostatisti
al software tools (e.g. Deuts
h and Jour-nel, 1998; Pebesma and Wesseling, 1998) provide the means for a fairlystraightforward modelling and simulation of spatial �elds for both dis
rete(nominal) and 
ontinuous variables, using the indi
ator simulation formalismfor the former and Gaussian random �elds for the latter. Using these maps asinput to gis models is far from easy though, and it may prevent large groupsfrom doing so for that reason.This paper dis
usses the 
on
ept of a sto
hasti
 (dynami
) gis, and pro-poses a set of fun
tions that should be added to the gis to provide errorestimates of model output, 
oming from model input error. In a 
ase studyregarding the analysis of stream 
ow and surfa
e runo� during a rain storm,we analyse how un
ertainty on in�ltration 
apa
ity in
uen
es the model out-put, being spatial distribution of runo� and temporal variation of river 
owat the 
at
hment outlet.2 Sto
hasti
 GIS2.1 A Monte Carlo approa
hSpatial operations of a map algebra gis 
an be generalised as follows:frg = f(A;B;C; :::) (1)with frg a set of one or more maps where the output is written to, with f(�)a simple or 
ompound operation, and with input maps A, B, C,... (possiblyin
luding some 
onstant maps). In a dynami
 gis (1) is evaluated everytime step, and the operation may involve an update of some maps for ea
htime step. The 
hallenge in a sto
hasti
 gis is to 
hara
terise the joint (thatis, multivariable) distribution fun
tion of frg over spa
e and time, given thejoint distributions of A, B, C,... . Analyti
 approa
hes (Heuvelink, 1998) haveaddressed analyti
al solutions to (1) for the 
ase where only non-spatials weresto
hasti
. The only feasible approa
h to 
ases that in
lude random spatialor spatio-temporal �elds appears to be a full spatio-temporal Monte Carlo(m
) simulation (Heuvelink, 1998).The most general implementation for an m
 approa
h 
onsiders evaluationover the sto
hasti
, temporal and spatial domain in the order:for m in MC-Samplefor t in TimeSteps< evaluate r >(evaluation of r trivially involves the looping over all spatial lo
ations). Fora full analysis of the results, all output of ea
h m
 run has to be stored. This
an be a full spatial time series for ea
h m
 run, or a single map (e.g. a statevariable at the last time step, or a map aggregate over time) or a non-spatialtime series (read from a lo
ation in a map, or aggregated over spa
e), or anaggregated (s
alar) value over either of the latter two.Moving the m
 loop inside the time or spa
e loop may be more eÆ
ient insome respe
ts, but only works in highly simpli�ed 
ases, e.g. in absen
e oftemporal and spatial 
orrelation of the model input.2.2 The `sto
hasti
' dimensionTaking the `randomness' as a new dimension, in the sense of spatial or tem-poral dimensions, 
an be justi�ed from both a 
on
eptual and an operationalpoint of view. From a 
on
eptual point of view, geographi
al spa
e, or the



3three-dimensional spa
e where we live in, is 
aptured by traditional gis (al-though most emphasis is traditionally put to the two `horizontal' dimensions).A temporal gis adds to this the temporal dimension, to 
apture 
hanges ofthe spatial settings over time. These four dimensions 
an thus be used torepresent everything we know. To add to this a representation of things wedo not know, for instan
e by probability density fun
tions (pdfs), we need atleast one more dimension. It may be argued that every point in spa
e/timethat needs a pdf adds one dimension, but usually easier representations aresought (for instan
e by assuming stationarity).From an operational point of view, the obvious regular dis
retisation of a3D-spa
e+time `blo
k' is a four-dimensional array. Using m
 analysis, thisarray is repli
ated a number of times equal to the m
 sample size. The obviousdis
retisation of su
h a sto
hasti
 3D-spa
e/time blo
k is a �ve-dimensionalarray: The added index identi�es the m
 sample element.The 
onsequen
e of adding a sto
hasti
 dimension is that the modeller hasto take one more aspe
t into a

ount when 
hoosing the spatial dis
retisation(raster map 
ell size) and temporal dis
retisation (time step): the m
 samplesize. The total 
omputational burden (and, as we will see in the worst 
ase,storage requirements) is of order:<map 
ells> � <time steps> � <m
 sample size>A real danger will be that naive users 
hoose a small sample m
 size be
ausethey prefer high-resolution maps, and end up with highly ina

urate estimatesof model output distributions.3 Analysis of the Monte Carlo outputTo obtain the 
omplete results from the m
 analysis, the full output has tobe retained: for instan
e the 
umulative probability density fun
tion of r ata given time and lo
ation is estimated from the ranked m
 sample valuesat this time and lo
ation. Also, this output may serve as input to anotherfun
tion, say g(�): p = g(r; :::)An example of g(�) is spatial aggregation of output of the fun
tion f(�), whi
hshould be applied to everym
 sample element (Heuvelink and Pebesma, 1998;Pebesma and Heuvelink 1999).To summarise all marginal 
umulative probability density fun
tions, atthe 
ost of loosing information of the joint density of r, one 
an use twoapproa
hes that di�er strongly with respe
t to storage requirements:1. 
olle
t a set of per
entiles, e.g. the 5-,10-,25-,50-,75-,90-,and 95-per
entile,2. 
olle
t the sum, sum of squares, sum of 
ube squares, ... and the frequen
yof sample elements being above a set of pre-de�ned thresholds.The se
ond option gives the possibility of estimating for ea
h lo
ation andtime the mean, varian
e, skewness and kurtosis, and probabilities of ex
eedingthresholds.Estimation of the per
entiles of a distribution requires that the full set of m
sample elements is stored, be
ause they need to be ranked before per
entiles
an be estimated. It should be noted here that for very high or low per
entilessome gain is obtained by only storing the n tail values, with n � qN , with qthe quantile estimated and with N the m
 sample size. In general however,the full output distribution is of interest, eliminating this advantage.
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Fig. 1. (a) Rainfall, measured at the three gauges (see Fig. 2b) in mm/6h; (b)runo� at the 
at
hment outlet: 2.5- and 97.5-per
entiles and median value in m3/hThe se
ond group of summary variables has the attra
tive property thatthey 
an be 
olle
ted without storing the 
omplete set of m
 sample ele-ments: they 
an be obtained by tra
king all the ne
essary sums during them
 simulation, and after ea
h m
 run the previous results 
an be dis
arded.4 Case study: rainfall-runo� simulationRainfall-runo� modelling 
an be useful for predi
ting river 
oods, soil mois-ture 
ontents, soil erosion, and eventually lands
ape evolution, in undulat-ing or hilly 
at
hments. A simple rainfall-runo� simulation model for the0.42 km2 Catsop 
at
hment (Limburg, The Netherlands) was implementedin p
raster. It evaluates for ea
h time step: (1) when rainfall intensity ex
eedsthe soil in�ltration 
apa
ity, the soil be
omes saturated and ex
ess rainfallwill run o� downhill; (2) surfa
e runo� is routed through a drainage networkand will either re-in�ltrate in subsequent non-saturated 
ells, or leave the
at
hment at its outlet.Rainfall at ea
h lo
ation is obtained by reading the rainfall time series data(Fig. 1a) from the nearest rainfall gauge (Fig. 2b) at that moment. The lo
aldrain dire
tion map de�ning the runo� network is derived from the elevationmap (Fig. 2a); and in�ltration is modelled as a fun
tion of soil texture (Fig.2b). Mean values for in�ltration were 2.8 (
lay), 8.3 (loam) and 19.0 (sand)[mm/6h℄. Standard deviations were taken as one third of the mean value, andthe semivarian
e between in�ltration at two sites a distan
e h (h > 0) apartwithin the same soil texture 
lass was modelled as an exponential variogram
(h) = �2(s)(1� 0:9 exp(�h=50));with �2(s) the soil-dependent varian
e (varian
e and spatial 
orrelation in-formation were obtained from Loague and Kyriakidis, 1997).Simulation of in�ltration 
apa
ity was done by sequential Gaussian simula-tion (Deuts
h and Journel, 1998). Negative simulated values were reset to azero value. To in
rease the m
 sampling eÆ
ien
y, Latin hyper
ube sampling(Pebesma and Heuvelink, 1999) was applied. A sample of 1000 in�ltration
apa
ity maps was obtained to study the e�e
t of unknown in�ltration 
a-pa
ity on spatial patterns of runo� (Fig. 3) and time series of runo� at the
at
hment outlet (Fig. 1b).The results show that the un
ertainty in
reases with runo� levels, but thatthe errors are small 
ompared to the modelled runo� levels. A
tual runo�
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Fig. 2. (a) map of altitude (grey shades; units m above sea level) and lo
al draindire
tions (drawn lines); (b) map of soil texture and lo
ation of rain gauges; mappedarea is 1 km � 0.8 km
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Fig. 3. (a) Median runo� at time step 20; (b) width of the empiri
al 95% 
on�den
einterval at time step 20measurements should be used to assess whether the errors in in�ltrationas they are modelled here 
an a

ount for the model predi
tion errors. Inaddition, in�ltration measurements should have been used for a more realisti
assessment of spatial errors in in�ltration.5 Dis
ussionA sto
hasti
 dynami
 gis 
an be obtained when one dimension is added toa gis that provides a temporal dimension. We do not yet provide su
h an



6environment in the p
raster proje
t, but all 
omponents required (a mapalgebra pa
kage; sto
hasti
 spatio-temporal simulation of dis
rete or 
ontin-uous random �elds, and sto
hasti
 output analysis fun
tions) are available.The bottlene
k is a 
onvenient data stru
ture that allows higher dimensionalmapping.When a sto
hasti
 gis environment is provided, the question arises howa suitable m
 sample size 
an be re
ommended to non-expert users. Thisdepends trivially on whi
h results (e.g., means or tail per
entiles) are needed,but general guidelines su
h as they exist for bootstrapping methods still haveto be developed. In addition, simple methods to experimentally determinethe a

ura
y (sampling error) of estimated m
 sample statisti
s, su
h asrepeated Latin hyper
ube sampling (Pebesma and Heuvelink, 1999) shouldbe provided.Bigger 
hallenges than handling random �elds in a gis are the 
omparisonand 
riti
al evaluation of alternative gis model stru
tures, by analysing modelresiduals (observed minus predi
ted values). One of the questions a sto
hasti
dynami
 gis 
an help to answer is whether the un
ertainty with respe
t togis model input 
an 
ompletely a

ount for the variation in model residuals.A
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