The stochastic dimension in a dynamic GIS
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Abstract. Coping with random fields in a time-dynamic geographic infor-
mation system (GIS) increases the computational burden and storage require-
ments with a large amount, and calls for a number of custom functions to
enable easy analysis of the resulting random components, as well as spe-
cialised output reporting functions. This paper addresses the computational
and implementation issues when a Monte Carlo approach is taken, and shows
some results from a rainfall-runoff model running within a GIs.
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1 Introduction

Geographical information systems (GISs, Burrough and McDonnel, 1998) lib-
erate the end-user from worrying about looping over all spatial entities by
providing a set of functions that operate on maps as a whole. Such functions
operate either point-wise, meaning that a result value exclusively depends on
the values in a set of maps at the same location, or they operate in a spatial
neighbourhood, meaning that values at other spatial locations contribute as
well. A point-wise operation can be the addition of two maps,
sum.map = a.map + b.map

a neighbourhood operation the calculation of distances to a point location:

distances.map = distanceto(point.map)
Writing GIS operations on maps as algebraic expressions was first proposed
by Tomlin and Berry (1979), and they named it ‘map algebra’.

Beyond the standard map algebra, pCrRaster (Wesseling et al., 1996) ex-
tends the set of spatial-only, static functions with a set of functions that
have a temporal dimension, by adding a loop over a (discretised) time axis:
spatial time series (stacks of maps) as well as aggregates over the iteration
period can now be processed and analysed. The thus obtained dynamic GIS
(implemented as a concise modelling language) has shown to be an easy tool
for fast implementation of a wide range of spatio-temporal processes, ranging
from distributed hydrological models to ecological dispersion or urban growth
models (cellular automata). Easy control over the modelling process enables
users with little expertise in GIS or computer programming to evaluate many
similar but alternative models, by simply trying them out.

Although some of the functions provided by PCRaster may contain some
form of randomness (e.g. a function returning a map with standard normal
i.i.d. variates), all functionality regards deterministic computation, meaning
that uncertainty with respect to model input variables cannot be handled. In
the practice of environmental modelling however, users are often confronted
with highly uncertain model inputs, and want to be able to assess how input
errors propagate to the output of their Gis models.



Today, freely available geostatistical software tools (e.g. Deutsch and Jour-
nel, 1998; Pebesma and Wesseling, 1998) provide the means for a fairly
straightforward modelling and simulation of spatial fields for both discrete
(nominal) and continuous variables, using the indicator simulation formalism
for the former and Gaussian random fields for the latter. Using these maps as
input to GIs models is far from easy though, and it may prevent large groups
from doing so for that reason.

This paper discusses the concept of a stochastic (dynamic) ais, and pro-
poses a set of functions that should be added to the Gis to provide error
estimates of model output, coming from model input error. In a case study
regarding the analysis of stream flow and surface runoff during a rain storm,
we analyse how uncertainty on infiltration capacity influences the model out-
put, being spatial distribution of runoff and temporal variation of river flow
at the catchment outlet.

2 Stochastic GIS

2.1 A Monte Carlo approach
Spatial operations of a map algebra GIS can be generalised as follows:

{r} =f(4,B,C,..) (1)

with {r} a set of one or more maps where the output is written to, with f(-)
a simple or compound operation, and with input maps A, B, C,... (possibly
including some constant maps). In a dynamic Gis (1) is evaluated every
time step, and the operation may involve an update of some maps for each
time step. The challenge in a stochastic GIS is to characterise the joint (that
is, multivariable) distribution function of {r} over space and time, given the
joint distributions of A, B, C,... . Analytic approaches (Heuvelink, 1998) have
addressed analytical solutions to (1) for the case where only non-spatials were
stochastic. The only feasible approach to cases that include random spatial
or spatio-temporal fields appears to be a full spatio-temporal Monte Carlo
(McC) simulation (Heuvelink, 1998).

The most general implementation for an MC approach considers evaluation
over the stochastic, temporal and spatial domain in the order:

for m in MC-Sample
for t in TimeSteps
< evaluate 1>

(evaluation of r trivially involves the looping over all spatial locations). For
a full analysis of the results, all output of each MC run has to be stored. This
can be a full spatial time series for each MC run, or a single map (e.g. a state
variable at the last time step, or a map aggregate over time) or a non-spatial
time series (read from a location in a map, or aggregated over space), or an
aggregated (scalar) value over either of the latter two.

Moving the MC loop inside the time or space loop may be more efficient in
some respects, but only works in highly simplified cases, e.g. in absence of
temporal and spatial correlation of the model input.

2.2 The ‘stochastic’ dimension

Taking the ‘randomness’ as a new dimension, in the sense of spatial or tem-
poral dimensions, can be justified from both a conceptual and an operational
point of view. From a conceptual point of view, geographical space, or the



three-dimensional space where we live in, is captured by traditional GIs (al-
though most emphasis is traditionally put to the two ‘horizontal’ dimensions).
A temporal GIs adds to this the temporal dimension, to capture changes of
the spatial settings over time. These four dimensions can thus be used to
represent everything we know. To add to this a representation of things we
do not know, for instance by probability density functions (PDFs), we need at
least one more dimension. It may be argued that every point in space/time
that needs a PDF adds one dimension, but usually easier representations are
sought (for instance by assuming stationarity).

From an operational point of view, the obvious regular discretisation of a
3D-space+time ‘block’ is a four-dimensional array. Using MC analysis, this
array is replicated a number of times equal to the MC sample size. The obvious
discretisation of such a stochastic 3D-space/time block is a five-dimensional
array: The added index identifies the MC sample element.

The consequence of adding a stochastic dimension is that the modeller has
to take one more aspect into account when choosing the spatial discretisation
(raster map cell size) and temporal discretisation (time step): the MC sample
size. The total computational burden (and, as we will see in the worst case,
storage requirements) is of order:

<map cells> x <time steps> x <MC sample size>
A real danger will be that naive users choose a small sample MC size because
they prefer high-resolution maps, and end up with highly inaccurate estimates
of model output distributions.

3 Analysis of the Monte Carlo output

To obtain the complete results from the MC analysis, the full output has to
be retained: for instance the cumulative probability density function of r at
a given time and location is estimated from the ranked MC sample values
at this time and location. Also, this output may serve as input to another
function, say g(-):

p=4g(r,..)

An example of g(-) is spatial aggregation of output of the function f(-), which
should be applied to every Mc sample element (Heuvelink and Pebesma, 1998;
Pebesma and Heuvelink 1999).

To summarise all marginal cumulative probability density functions, at
the cost of loosing information of the joint density of r, one can use two
approaches that differ strongly with respect to storage requirements:

1. collect a set of percentiles, e.g. the 5-,10-,25-,50-,75-,90-,and 95-percentile,
2. collect the sum, sum of squares, sum of cube squares, ... and the frequency
of sample elements being above a set of pre-defined thresholds.

The second option gives the possibility of estimating for each location and
time the mean, variance, skewness and kurtosis, and probabilities of exceeding
thresholds.

Estimation of the percentiles of a distribution requires that the full set of MC
sample elements is stored, because they need to be ranked before percentiles
can be estimated. It should be noted here that for very high or low percentiles
some gain is obtained by only storing the n tail values, with n ~ ¢V, with ¢
the quantile estimated and with N the MC sample size. In general however,
the full output distribution is of interest, eliminating this advantage.



rainfall (mm/6h)
runoff (m/h)

o
a time step (2h units) b time step (2h units)

Fig.1. (a) Rainfall, measured at the three gauges (see Fig. 2b) in mm/6h; (b)
runoff at the catchment outlet: 2.5- and 97.5-percentiles and median value in m®/h

The second group of summary variables has the attractive property that
they can be collected without storing the complete set of MC sample ele-
ments: they can be obtained by tracking all the necessary sums during the
MC simulation, and after each MC run the previous results can be discarded.

4 Case study: rainfall-runoff simulation

Rainfall-runoff modelling can be useful for predicting river floods, soil mois-
ture contents, soil erosion, and eventually landscape evolution, in undulat-
ing or hilly catchments. A simple rainfall-runoff simulation model for the
0.42 km? Catsop catchment (Limburg, The Netherlands) was implemented
in PCRaster. It evaluates for each time step: (1) when rainfall intensity exceeds
the soil infiltration capacity, the soil becomes saturated and excess rainfall
will run off downhill; (2) surface runoff is routed through a drainage network
and will either re-infiltrate in subsequent non-saturated cells, or leave the
catchment at its outlet.

Rainfall at each location is obtained by reading the rainfall time series data
(Fig. 1a) from the nearest rainfall gauge (Fig. 2b) at that moment. The local
drain direction map defining the runoff network is derived from the elevation
map (Fig. 2a); and infiltration is modelled as a function of soil texture (Fig.
2b). Mean values for infiltration were 2.8 (clay), 8.3 (loam) and 19.0 (sand)
[mm/6h]. Standard deviations were taken as one third of the mean value, and
the semivariance between infiltration at two sites a distance h (h > 0) apart
within the same soil texture class was modelled as an exponential variogram

v(h) = 0% (s)(1 — 0.9 exp(~h/50)),

with o2(s) the soil-dependent variance (variance and spatial correlation in-
formation were obtained from Loague and Kyriakidis, 1997).

Simulation of infiltration capacity was done by sequential Gaussian simula-
tion (Deutsch and Journel, 1998). Negative simulated values were reset to a
zero value. To increase the MC sampling efficiency, Latin hypercube sampling
(Pebesma and Heuvelink, 1999) was applied. A sample of 1000 infiltration
capacity maps was obtained to study the effect of unknown infiltration ca-
pacity on spatial patterns of runoff (Fig. 3) and time series of runoff at the
catchment outlet (Fig. 1b).

The results show that the uncertainty increases with runoff levels, but that
the errors are small compared to the modelled runoff levels. Actual runoff
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Fig. 2. (a) map of altitude (grey shades; units m above sea level) and local drain
directions (drawn lines); (b) map of soil texture and location of rain gauges; mapped
area is 1 km x 0.8 km
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Fig. 3. (a) Median runoff at time step 20; (b) width of the empirical 95% confidence
interval at time step 20

measurements should be used to assess whether the errors in infiltration
as they are modelled here can account for the model prediction errors. In
addition, infiltration measurements should have been used for a more realistic
assessment of spatial errors in infiltration.

5 Discussion

A stochastic dynamic GIS can be obtained when one dimension is added to
a GIS that provides a temporal dimension. We do not yet provide such an



environment in the PCRaster project, but all components required (a map
algebra package; stochastic spatio-temporal simulation of discrete or contin-
uous random fields, and stochastic output analysis functions) are available.
The bottleneck is a convenient data structure that allows higher dimensional
mapping.

When a stochastic GIS environment is provided, the question arises how
a suitable MC sample size can be recommended to non-expert users. This
depends trivially on which results (e.g., means or tail percentiles) are needed,
but general guidelines such as they exist for bootstrapping methods still have
to be developed. In addition, simple methods to experimentally determine
the accuracy (sampling error) of estimated MC sample statistics, such as
repeated Latin hypercube sampling (Pebesma and Heuvelink, 1999) should
be provided.

Bigger challenges than handling random fields in a GIS are the comparison
and critical evaluation of alternative GIs model structures, by analysing model
residuals (observed minus predicted values). One of the questions a stochastic
dynamic GIS can help to answer is whether the uncertainty with respect to
GIS model input can completely account for the variation in model residuals.
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