Towards meaningful spatial statistics

Edzer Pebesma, Christoph Stasch, Simon Scheider, Werner Kuhn

```
ifgi
Institute for Geoinformatics
``` University of Münster

Spatial Statistics, Columbus OH Jun 5-7, 2013

\section*{Motivation}
- more data becomes available from an increasing number of sources
- (interdisciplinary) research tries to integrate more different types of data
- the distance between researcher and the act of observation increases

\section*{Motivation}
- more data becomes available from an increasing number of sources
- (interdisciplinary) research tries to integrate more different types of data
- the distance between researcher and the act of observation increases
\(\Rightarrow\) the risk of inappropriate or meaningless analysis increases

\section*{What does meaningful mean?}
```

> f = factor(c("yellow", "yellow", "red", "blue"))
>f
[1] yellow yellow red blue
Levels: blue red yellow
>mean(f)
[1] NA
Warning message:
In mean.default(f) : argument is not numeric or logical: returning NA
> as.numeric(f)
[1] 3 3 2 1
> mean(as.numeric(f))
[1] 2.25

```

\section*{What does meaningful mean?}
```

> f = factor(c("yellow", "yellow", "red", "blue"))
>f
[1] yellow yellow red blue
Levels: blue red yellow
>mean(f)
[1] NA
Warning message:
In mean.default(f) : argument is not numeric or logical: returning NA
> as.numeric(f)
[1] 3 3 2 1
> mean(as.numeric(f))
[1] 2.25

```
factor variables represent categorical (nominal) data; for these, it is meaningless to compute means and variances.
Stevens, S.S., 1946. On the Theory of Scales and Measurement. Science 103, 677-680.

\section*{Air quality in Europe: EEA report 4/2012}

Trends in \(\mathrm{PM}_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)\), 2001-2010, per station type

"in the diagrams a geographical bias exists towards central Europe where there is a higher density of stations"

\section*{Air quality in Europe: EEA report 4/2012}

Trends in \(\mathrm{PM}_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)\), 2001-2010, per station type

"in the diagrams a geographical bias exists towards central Europe where there is a higher density of stations"
to obtain aggregate values for Europe, one needs to aggregate predictions over Europe (block kriging)

\section*{Why "Towards"?}

\title{
Meaningful Spatial Prediction and Aggregation
}

\author{
Christoph Stasch \({ }^{\text {a,* }}\), Simon Scheider \({ }^{\text {a }}\), Edzer Pebesma \({ }^{\text {a,b }}\), Werner Kuhn \({ }^{\text {a }}\) \\ \({ }^{a}\) Institute for Geoinformatics, University of Muenster, Weseler Strasse 253, 48153 Muenster, Germany \\ \({ }^{b} 52\) North Initiative for Geospatial Open Source Software GmbH, Martin-Luther-King-Weg 24, 48151 Muenster, Germany
}

\begin{abstract}
The appropriateness of spatial prediction methods such as Kriging, or aggregation methods such as summing observation values over an area, is currently judged by domain experts using their knowledge and expertise. In order to provide support from information systems for automatically discouraging or proposing prediction or aggregation methods for a dataset, expert knowledge needs to be formalized. This involves, in particular, knowledge about phenomena represented by data and models, as well as about underlying procedures. In this paper, we introduce a novel notion of meaningfulness of prediction and aggregation. To this end, we present a formal theory about spatio-temporal variable types, observation procedures, as well as interpolation and aggregation procedures relevant in Spatial Statistics. Meaningfulness is defined as correspondence between functions and data sets, the former representing data generation procedures such as observation and prediction. Comparison is based on semantic reference systems, which are types
\end{abstract}

\section*{How do point data look?}
```

> library(gstat)
> data(meuse)
> meuse[1:5, c("x","y","zinc")]
x y zinc
1 181072 333611 1022
2 181025 333558 1141
3 181165 333537 640
4181298 333484 257
5 181307 333330 269
> co2 = read.csv("co2_emission_powerplants.csv")
> co2[1:5, c("longitude", "latitude", "carbon_2007")]
longitude latitude carbon_2007
1 14.45305051.83248 27400000
2 6.575827 51.05470 24100000
3 6.66883150.99228 30400000
4 6.615766 51.03780 22200000
5 6.313576 50.83805 22000000

```

\section*{How do point data look?}
```

> library(gstat)
> data(meuse)
> meuse[1:5, c("x","y","zinc")]
x y zinc
1 181072 333611 1022
2 181025 333558 1141
3 181165 333537 640
4181298 333484 257
5 181307 333330 269
> co2 = read.csv("co2_emission_powerplants.csv")
> co2[1:5, c("longitude", "latitude", "carbon_2007")]
longitude latitude carbon_2007
1 14.453050 51.83248 27400000
2 6.575827 51.05470 24100000
3 6.668831 50.99228 30400000
4 6.615766 51.03780 22200000
5 6.313576 50.83805 22000000

```
these data look similar, but can we do similar things with them?

\section*{Example: sum of top soil zinc concentrations}
```

> sum(meuse\$zinc)

```
[1] 72806
\(>\) coordinates(meuse) \(=\sim_{x}+y\)
> data(meuse.grid)
\(>\operatorname{gridded}\left(\right.\) meuse.grid) \(=\sim_{x+y}\)
> library (rgeos)
> area = gUnionCascaded(as(meuse.grid, "SpatialPolygons"))
> aggregate(meuse["zinc"], area, sum) [[1]]
[1] 72806
> sum(meuse[area,] [["zinc"]])
[1] 72806

\section*{Example: sum of coal power plant \(\mathrm{CO}_{2}\) emissions}
```

> sum(co2\$carbon_2007)
[1] 408032358
> coordinates(co2) = ~longitude+latitude
> library(spacetime)
> data(air)
> DE = gUnionCascaded(DE_NUTS1)
> proj4string(co2) = proj4string(DE)
> sum(co2[DE,][["carbon_2007"]])
[1] 407203574
> as(aggregate(co2["carbon_2007"], DE_NUTS1, sum), "data.frame")
Baden-Wurttemberg
12524147.5
Berlin 13049336.8
Brandenburg 47260944.6
Bremen 7328829.7
Hamburg 1927826.4
Hessen 11758650.6
Mecklenburg-Vorpommern 5188286.9
Niedersachsen 22296016.3
Nordrhein-Westfalen 184510334.0
Rheinland-Pfalz 5545028.7
Saarland 18568351.3
Sachsen 34103366.0
Sachsen-Anhalt 10268063.7
Schleswig-Holstein 2433435.1
Thuringen 529650.3

```


\section*{Example: interpolating top soil zinc concentration}
```

> v = variogram(log(zinc)~1, meuse)
> v.fit = fit.variogram(v, vgm(1, "Sph", 900, 1))
> m.kr = krige(log(zinc) ~1, meuse, meuse.grid, v.fit)
[using ordinary kriging]
> spplot(m.kr["var1.pred"])

```


\section*{Interpolating power plant \(\mathrm{CO}_{2}\) emissions}
> \# create interpolation grid:
\(>\operatorname{grd}=\operatorname{spsample}(D E, 10000\), "regular", offset \(=c(0,0))\)
\(>\operatorname{gridded}(\mathrm{grd})=\) TRUE
> \# interpolate, idw:
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
[inverse distance weighted interpolation]

Interpolated \(\mathrm{CO}_{2}\) emissions in 2007 (tons)

\section*{Types of Reference System Domains}
\begin{tabular}{|c|c|c|c|}
\hline Reference Domain & Type & Description & Example \\
\hline \begin{tabular}{ll}
Domain of a \\
Spatial & Refer- \\
ence System
\end{tabular} & \(D_{s}\) & All possible locations that are defined in a spatial reference system; we restrict \(D_{s}\) to \(D_{s} \subset \mathbb{R}^{2}\) & \[
\begin{aligned}
& ([-90,90] \\
& [-180,180]) \subset \mathbb{R}^{2} \\
& \text { defined in WGS84 }
\end{aligned}
\] \\
\hline Domain of a Temporal Reference System & \(D_{t}\) & All possible times defined in a temporal reference system & POSIX time (seconds from 1st January 1970 UTC) with \(D_{t} \subset \mathbb{Q}\) \\
\hline Domain of a Quality Reference System & \(D_{q}\) & Set of all values that a quality might take & \(\left[0,10^{6}\right] \subset \mathbb{R}\) with unit ppm as defined in Unified Code for Units of Measure (UCUM) \\
\hline Domain of Discrete Entities & \(D_{d}\) & Set of discrete objects or events. & Set of coal power plants in Germany in 2010 \\
\hline
\end{tabular}

\section*{Variable Types in Spatial Statistics}
- Point patterns: (unmarked, marked) \(\times\) (spatial, temporal, spatio-temporal)
MSTPP \(=" D_{d} \Rightarrow\left(D_{t} \times D_{s} \times D_{q}\right) "\)
- Geostatistical variables: (spatial, temporal, spatio-temporal) GEOST \(="\left(D_{s} \times D_{t}\right) \Rightarrow D_{q} "\)
- Lattice variables: (spatial, temporal, spatio-temporal) \(L A T="\left({ }^{r} D_{s} \times D_{t}\right) \Rightarrow D_{q} "\)
- Trajectories: (unmarked, marked)

MTRAJECT \(=" D_{d} \Rightarrow D_{t} \Rightarrow\left(D_{s} \times D_{q}\right) "\)

\section*{Meaningfulness}

Meaningfulness checks are implemented in our formalism as correspondence checks:
- Meaningful prediction is introduced based on a correspondence check between observation functions and prediction functions that ensures that there is a possible observation for each prediction.
- Meaningful aggregation is based on checking whether an observed window corresponds to the target regions of an aggregation, hence testing the condition, that the target region needs to be observed completely in case of using the sum as an aggregation function.

\section*{Observation windows}

\section*{What we would like to see:}
```

> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon_2007 ~ 1, co2, grd) :
(converted from warning) interpolating point patterns is not considered meaningful

```

\section*{What we would like to see:}
```

> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon_2007 ~ 1, co2, grd) :
(converted from warning) interpolating point patterns is not considered meaningful
... but should this require additional coding?

```

\section*{What we would like to see:}
```

> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon_2007 ~ 1, co2, grd) :
(converted from warning) interpolating point patterns is not considered meaningful
... but should this require additional coding?
=> at the time of data import the variable type should be set.

```
http://meaningfulspatialstatistics.org
... serves our OWL (web ontology language) pattern, which
- provides the classes defined, and their relationships
- allows semantic annotation of data sets, and procedures
... provides a meaningful spatial statistics data portal, which
- is based on linked data, storing RDF triples, e.g. DataSet_XYZ isOfType MarkedSpatialPointPattern with appropriate links (URIs) to resources and definitions
- allows retrieving and uploading annotations about data types
- allows e.g. retrieving collections of a particular type,
- supports SPARQL directly, or from R using package RSPARQL

\section*{OWL pattern}

\section*{Conclusions, discussion:}
- Semantic annotation of data can help prevent meaningless operations
- Automated reasoning is still challenging (HOL implementation of formalism)
- the "what is a data set?" question: DOI, fields, etc.
- Filling the annotation data portal by scraping CRAN, jstatsoft.org, and other published analyses scripts
- Handling ambiguities in annotations
- (user management and authority in the annotations data base)

\section*{The limits of crisp classes}
- are traffic station air quality measurements geostatistical variables? (stationarity assumption)
- what if a car measures engine temperature and outside air temperature?
- what does the sum of observed bird counts mean, in particular in case of volunteered information?
- time series of power plant \(\mathrm{CO}_{2}\) emmissions: hybrid classes?
- if not meaningful as predictions, what do interpolated point pattern marks tell us?

Web Portal

annotate datasets / browse annotations

Meaningful Analysis in \(R\)

retrieve/upload annotations + meaningful analysis

\section*{Add annotations}

Meaningful Spatial Statistics Portal
Home Idea Add Dataset Browre Datasets Theones and Tools Team \& Contact

It you want to make your datasets avallable onine and want to provide some useful intormation on meaningtul analysis, you can upload this intormation here

\section*{Browse annotations}

\section*{Meaningful Spatial Statistics Portal}

\author{
Home
}

\section*{Query information about datasets}

Browse through statistical datasets of a particular statistical variable type here. If you want to directly query the metadata as Linked Data, please use the SPARQL endpoint below.
Spatial Point Pattern \(\quad\) Browse Information Clear Results

Spatial Point Pattern Datasets
\begin{tabular}{lllll}
Source URL & Phenomenon & License & Format \\
\hline http://my._uri.com/pp1 & http://sweet.jpl.nasa.gov & http://creativecommons.org/licenses & Comma-seperated \\
& \(12.2 /\) matrAerosol.ow/\#PM10 & /by/3.0/legalcode & Values (CSV)
\end{tabular}

\section*{SPARQL endpoint}

The metadata about statistical datasets is stored in the Linked Open Data cloud in the RDF format. The databases in the Linked Open Data cloud are called triple stores and the common query language to retrieve the linked data is called SPARQL You can retrieve information about the statistical datasets by sending a SPARQL query to the rollowing endpoint of our triple store:
http.//giv-miss uni-muerister.de. 8081/parliament/sparq|

\section*{Retrieve Annotations in R}
```

> endpoint <- "http://giv-mss.uni-muenster.de:8081/parliament/sparq1"
> ppData <- getSpatioTemporalPointPatterns(endpoint)
> ppData
ur1
1 Shttp://giv-mss.uni-muenster.de/data/co2_emission_powerplants.csv>
1 [http://www.meaningfulspatialstatistics.org/theories/Meaningfulspatialstatistics.owl\#MarkedspatiotemporalpointPattern](http://www.meaningfulspatialstatistics.org/theories/Meaningfulspatialstatistics.owl%5C#MarkedspatiotemporalpointPattern) phen
1 http://stats. oecd. org/g1ossary/detail. asp?ID=6323

```

\section*{obswinsp}
```

$1<!$ [CDATA[<http://ww. opengis. net/def/crs/EPSG/O/4326>POLYGON( $5.71289062547 .040182144806664,5.712890625 \quad 55.27911529201561,15.99609375$
$55.27911529201561,15.9960937547 .040182144806664,5.71289062547 .040182144806664))]]>$
obswinsegin obswinEnd license format
1 2007-01-01T00:00:00Z 2007-12-31T23:59:59Z http://creativecommons.org/1icenses/by/3.0/ CSV

```
```

> geostData <- getGeosts(endpoint)

```
[1] "Results are:

\section*{Upload Annotations}
> insertGeosts (endpoint = endpoint, dataurl="http://my.server.com/pm10interpolated1", phenomenon="http://sweet.jp1.nasa.gov/2.2/matrAerosol.ow1\#PM10",
format="geotiff", license="http://creativecommons.org/licenses/by/3.0/")
Annotation inserted successfully!
>```

