Towards meaningful spatial statistics

Edzer Pebesma, Christoph Stasch, Simon Scheider, Werner Kuhn

Institute for Geoinformatics University of Münster

Spatial Statistics, Columbus OH Jun 5-7, 2013

Motivation

- more data becomes available from an increasing number of sources
- (interdisciplinary) research tries to integrate more different types of data
- the distance between researcher and the act of observation increases

Motivation

- more data becomes available from an increasing number of sources
- (interdisciplinary) research tries to integrate more different types of data
- the distance between researcher and the act of observation increases
- \Rightarrow the risk of inappropriate or meaningless analysis increases

What does meaningful mean?

```
> f = factor(c("yellow", "yellow", "red", "blue"))
> f
[1] yellow yellow red blue
Levels: blue red yellow
> mean(f)
[1] NA
Warning message:
In mean.default(f) : argument is not numeric or logical: returning NA
> as.numeric(f)
[1] 3 3 2 1
> mean(as.numeric(f))
[1] 2.25
```

What does meaningful mean?

```
> f = factor(c("yellow", "yellow", "red", "blue"))
> f
[1] yellow yellow red blue
Levels: blue red yellow
> mean(f)
[1] NA
Warning message:
In mean.default(f) : argument is not numeric or logical: returning NA
> as.numeric(f)
[1] 3 3 2 1
> mean(as.numeric(f))
[1] 2.25
```

factor variables represent categorical (nominal) data; for these, it is meaningless to compute means and variances. Stevens, S.S., 1946. *On the Theory of Scales and Measurement*. Science 103, 677–680.

Air quality in Europe: EEA report 4/2012

Trends in PM₁₀ ($\mu g/m^3$), 2001-2010, per station type

"in the diagrams a geographical bias exists towards central Europe where there is a higher density of stations"

Air quality in Europe: EEA report 4/2012

Trends in PM₁₀ ($\mu g/m^3$), 2001-2010, per station type

"in the diagrams a geographical bias exists towards central Europe where there is a higher density of stations" to obtain aggregate values for Europe, one needs to aggregate predictions over Europe (block kriging)

Why "Towards"?

Meaningful Spatial Prediction and Aggregation

Christoph Stasch^{a,*}, Simon Scheider^a, Edzer Pebesma^{a,b}, Werner Kuhn^a

^aInstitute for Geoinformatics, University of Muenster, Weseler Strasse 253, 48153 Muenster, Germany ^b52 North Initiative for Geospatial Open Source Software GmbH, Martin-Luther-King-Weg 24, 48151 Muenster, Germany

B

Abstract

The appropriateness of spatial prediction methods such as Kriging, or aggregation methods such as summing observation values over an area, is currently judged by domain experts using their knowledge and expertise. In order to provide support from information systems for automatically discouraging or proposing prediction or aggregation methods for a dataset, expert knowledge needs to be formalized. This involves, in particular, knowledge about phenomena represented by data and models, as well as about underlying procedures. In this paper, we introduce a novel notion of *meaningfulness* of prediction and aggregation. To this end, we present a formal theory about spatio-temporal variable types, observation procedures, as well as interpolation and aggregation procedures relevant in Spatial Statistics. Meaningfulness is defined as correspondence between functions and data sets, the former representing *data generation procedures* such as observation and prediction. Comparison is based on *semantic reference systems*, which are types

How do point data look?

```
> library(gstat)
> data(meuse)
> meuse[1:5, c("x", "y", "zinc")]
             y zinc
      х
1 181072 333611 1022
2 181025 333558 1141
3 181165 333537 640
4 181298 333484 257
5 181307 333330 269
> co2 = read.csv("co2_emission_powerplants.csv")
> co2[1:5, c("longitude", "latitude", "carbon_2007")]
 longitude latitude carbon_2007
1 14.453050 51.83248
                       27400000
2 6.575827 51.05470
                       24100000
                     30400000
3 6.668831 50.99228
                    22200000
4 6.615766 51.03780
                     22000000
5 6.313576 50.83805
```

How do point data look?

```
> library(gstat)
> data(meuse)
> meuse[1:5, c("x", "y", "zinc")]
       х
             y zinc
1 181072 333611 1022
2 181025 333558 1141
3 181165 333537 640
4 181298 333484 257
5 181307 333330 269
> co2 = read.csv("co2_emission_powerplants.csv")
> co2[1:5, c("longitude", "latitude", "carbon 2007")]
 longitude latitude carbon_2007
1 14,453050 51,83248
                       27400000
2 6.575827 51.05470
                       24100000
3 6.668831 50.99228
                       30400000
                     22200000
4 6.615766 51.03780
5 6.313576 50.83805
                     22000000
```

these data look similar, but can we do similar things with them?

Example: sum of top soil zinc concentrations

```
> sum(meuse$zinc)
```

[1] 72806

```
> coordinates(meuse) = ~x+y
> data(meuse.grid)
> gridded(meuse.grid) = ~x+y
> library(rgeos)
> area = gUnionCascaded(as(meuse.grid, "SpatialPolygons"))
> aggregate(meuse["zinc"], area, sum)[[1]]
[1] 72806
```

```
> sum(meuse[area,][["zinc"]])
```

[1] 72806

Example: sum of coal power plant CO₂ emissions

```
> sum(co2$carbon_2007)
```

```
[1] 408032358
```

```
> coordinates(co2) = ~longitude+latitude
> library(spacetime)
> data(air)
> DE = gUnionCascaded(DE_NUTS1)
> proj4string(co2) = proj4string(DE)
> sum(co2(DE,][["carbon_2007"]])
```

[1] 407203574

> as(aggregate(co2["carbon_2007"], DE_NUTS1, sum), "data.frame")

	carbon_2007
Baden-Wurttemberg	29911306.2
Bayern	12524147.5
Berlin	13049336.8
Brandenburg	47260944.6
Bremen	7328829.7
Hamburg	1927826.4
Hessen	11758650.6
Mecklenburg-Vorpommern	5188286.9
Niedersachsen	22296016.3
Nordrhein-Westfalen	184510334.0
Rheinland-Pfalz	5545028.7
Saarland	18568351.3
Sachsen	34103366.0
Sachsen-Anhalt	10268063.7
Schleswig-Holstein	2433435.1
Thuringen	529650.3

Example: interpolating top soil zinc concentration

```
> v = variogram(log(zinc)~1, meuse)
> v.fit = fit.variogram(v, vgm(1, "Sph", 900, 1))
> m.kr = krige(log(zinc)~1, meuse, meuse.grid, v.fit)
```

```
[using ordinary kriging]
```

```
> spplot(m.kr["var1.pred"])
```


Interpolating power plant CO₂ emissions

> # create interpolation grid: > grd = spsample(DE, 10000, "regular", offset = c(0,0)) > gridded(grd) = TRUE > # interpolate, idw: > co2_interpolated <- krige(carbon_2007~1, co2, grd)</pre>

[inverse distance weighted interpolation]

Interpolated CO₂ emissions in 2007 (tons)

Types of Reference System Domains

Reference Do-	Туре	Description	Example
main			
Domain of a	Ds	All possible locations	([-90,90] ×
Spatial Refer-		that are defined in a	$[-180, 180]) \subset \mathbb{R}^2$
ence System		spatial reference sys- tem; we restrict D_s to $D_s \subset \mathbb{R}^2$	defined in WGS84
Domain of a	D_t	All possible times	POSIX time (sec-
Temporal Refer-		defined in a tempo-	onds from 1st
ence System		ral reference system	January 1970 UTC) with $D_t \subset \mathbb{Q}$
Domain of a	D_q	Set of all values that	$[0,10^6]~\subset~\mathbb{R}$ with
Quality Refer-		a quality might take	unit ppm as de-
ence System			fined in Unified Code
			for Units of Measure
			(UCUM)
Domain of Dis-	D_d	Set of discrete ob-	Set of coal power
crete Entities		jects or events.	plants in Germany in 2010

Variable Types in Spatial Statistics

- **Point patterns**: (unmarked, marked) × (spatial, temporal, spatio-temporal) $MSTPP = "D_d \Rightarrow (D_t \times D_s \times D_q)"$
- Geostatistical variables: (spatial, temporal, spatio-temporal) $GEOST = "(D_s \times D_t) \Rightarrow D_q"$
- Lattice variables: (spatial, temporal, spatio-temporal) $LAT = "(^{r}D_{s} \times D_{t}) \Rightarrow D_{q}"$
- **Trajectories**: (unmarked, marked) $MTRAJECT = "D_d \Rightarrow D_t \Rightarrow (D_s \times D_q)"$

Meaningfulness

Meaningfulness checks are implemented in our formalism as correspondence checks:

- Meaningful prediction is introduced based on a correspondence check between observation functions and prediction functions that ensures that there is a possible observation for each prediction.
- Meaningful aggregation is based on checking whether an observed window corresponds to the target regions of an aggregation, hence testing the condition, that the target region needs to be observed completely in case of using the sum as an aggregation function.

Observation windows

What we would like to see:

```
> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
 aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
  interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon_2007 ~ 1, co2, grd) :
  (converted from warning) interpolating point patterns is not considered meaningful
```

What we would like to see:

```
> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
  aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
  interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon 2007 ~ 1, co2, grd) :
  (converted from warning) interpolating point patterns is not considered meaningful
```

... but should this require additional coding?

What we would like to see:

```
> options(warn = 1)
> library(mss)
> meuse = as(meuse, "GeostatisticalDataFrame")
> m = aggregate(meuse["zinc"], area, sum)
Warning in aggregate.GeostatisticalDataFrame(meuse["zinc"], area, sum) :
  aggregation using a sum function is not considered meaningful for Geostatistical data
> co2 = as(co2, "PointPatternDataFrame")
> co2_interpolated = krige(carbon_2007~1, co2, grd)
Warning in krige(carbon_2007 ~ 1, co2, grd) :
  interpolating point patterns is not considered meaningful
[inverse distance weighted interpolation]
> options(warn = 2)
> co2_interpolated <- krige(carbon_2007~1, co2, grd)
Error in krige(carbon 2007 ~ 1, co2, grd) :
  (converted from warning) interpolating point patterns is not considered meaningful
... but should this require additional coding?
```

 \Rightarrow at the time of data *import* the variable type should be set.

http://meaningfulspatialstatistics.org

- ... serves our OWL (web ontology language) pattern, which
 - provides the classes defined, and their relationships
 - allows semantic annotation of data sets, and procedures
- ... provides a meaningful spatial statistics data portal, which
 - is based on linked data, storing RDF triples, e.g. DataSet_XYZ isOfType MarkedSpatialPointPattern with appropriate links (URIs) to resources and definitions
 - allows retrieving and uploading annotations about data types
 - allows e.g. retrieving collections of a particular type,
 - supports SPARQL directly, or from R using package RSPARQL

OWL pattern

Conclusions, discussion:

- Semantic annotation of data can help prevent meaningless operations
- Automated reasoning is still challenging (HOL implementation of formalism)
- the "what is a data set?" question: DOI, fields, etc.
- Filling the annotation data portal by scraping CRAN, jstatsoft.org, and other published analyses scripts
- Handling ambiguities in annotations
- (user management and authority in the annotations data base)

The limits of crisp classes

- are traffic station air quality measurements geostatistical variables? (stationarity assumption)
- what if a car measures engine temperature and outside air temperature?
- what does the sum of observed bird counts mean, in particular in case of volunteered information?
- time series of power plant CO₂ emmissions: hybrid classes?
- if not meaningful as predictions, what *do* interpolated point pattern marks tell us?

Web Portal

annotate datasets / browse annotations

retrieve/upload annotations + meaningful analysis

Add annotations

Meaningful Spatial Statistics Portal

Home Idea Add	Dataset	Browse Datasets	Theories and Tools	Team & Contact		
If you want to make your	datasets	available online and wa	nt to provide some us	seful information on me	aningful analysis, you can upload this in	formation here.
Datasource URL	Datasource URL http://giv-mss.uni-muenster.de/data/EU_meas_2005_june.csv			0		
Statistical Data Type	Ge	ostatistical Data	• 0			
	Clo	se additional information	form			
F	ormat	Comma-seperated Valu	ies (CSV)	0		
Lic	ense	http://creativecommons	.org/licenses/by/3.0	0		
Phenomeno	n URI	http://sweet.jpl.nasa.go	v/2.2/matrAerosol.o/	0		
	Up	load Information Car	icel			

© 2012 Institute for Geoinformatics

Back to top

Browse annotations

Meaningful Spatial Statistics Portal

Query information about datasets

Browse through statistical datasets of a particular statistical variable type here. If you want to directly query the metadata as Linked Data, please use the SPARQL endpoint below.

Spatial Point Pattern 💽 Browse Information Clear Results

Spatial Point Pattern Datasets

Source URL	Phenomenon	License	Format
http://my.url.com/pp1	http://sweet.jpl.nasa.gov	http://creativecommons.org/licenses	Comma-seperated
	/2.2/matrAerosol.owl#PM10	/by/3.0/legalcode	Values (CSV)
http://glv-mss.uni-muenster.de	http://sweet.jpl.nasa.gov	http://creativecommons.org/licenses	Comma-seperated
/data/EU_meas_2003_june.csv	/2.2/matrAerosol.owi#PM10	/by/3.0/legalcode	Values (CSV)
http://giv-mss.uni-muenster.de	http://sweet.jpl.nasa.gov	http://creativecommons.org/licenses	Comma-seperated
/data/EU_meas_2005_june.csv	/2.2/matrAerosol.owt#PM10	/by/3.0/legalcode	Values (CSV)

SPARQL endpoint

The metadata about statistical datasets is stored in the Linked Open Data cloud in the RDP format. The databases in the Linked Open Data cloud are called triple stores and the common query language to ethiceve the linked data is called SPARQL. You can retrieve information about the statistical datasets by sending a SPARQL query to the following endpoint of our triple store.

http://giv-mss.uni-muenster.de:8081/parliament/sparql

Retrieve Annotations in R

```
> endpoint <- "http://giv-mss.uni-muenster.de:8081/parliament/spargl"</pre>
 > ppData <- getSpatioTemporalPointPatterns(endpoint)</pre>
 > ppData
                                                                   ur1
 1 <http://giv-mss.uni-muenster.de/data/co2_emission_powerplants.csv>
                                                                                                                    vartype
 1 <http://www.meaningfulspatialstatistics.org/theories/MeaningfulSpatialStatistics.owl#MarkedSpatioTemporalPointPattern>
                                                 nhen
 1 http://stats.oecd.org/glossarv/detail.asp?ID=6323
 obswinsp
 1 </ [CDATA[<http://www.openais.net/def/crs/EPSG/0/4326>POLYGON((5.712890625 47.040182144806664.5.712890625 55.27911529201561.15.99609375
 55.27911529201561,15.99609375 47.040182144806664,5.712890625 47.040182144806664))]]>
            obsWinBegin
                                   obsWinEnd
                                                                                  license format
 1 2007-01-01T00:00:002 2007-12-31T23:59:59z http://creativecommons.org/licenses/by/3.0/
                                                                                           CSV
> geostData <- getGeosts(endpoint)</pre>
[1] "Results are: "
                                                                                                                phen format license
                                   <http://mv.dataset.com/ds6>
1
                                                                            http://mv.dataset.phens/testPhenomenon
                                                                                                                          NΔ
                                                                                                                                  NΔ
2 <http://giv-mss.uni-muenster.de/data/Eu_meas_2005_june.csv> http://sweet.jpl.nasa.gov/2.2/matrAerosol.owl#PM10
                                                                                                                                 NΔ
                                                                                                                          NΔ
> |
```

Upload Annotations

```
> insertGeosts(endpoint = endpoint, dataurl="http://my.server.com/pm10interpolated1",
phenomenon="http://sweet.jpl.nasa.gov/2.2/matrAerosol.owl#PM10",
format="geoTiff",license="http://creativecommons.org/licenses/by/3.0/")
Annotation inserted successfully!
> |
```